Minimal, auditable JS implementation of elliptic curve cryptography.
- Short Weierstrass, Edwards, Montgomery curves
- ECDSA, EdDSA, Schnorr, BLS signature schemes, ECDH key agreement
- hash to curve for encoding or hashing an arbitrary string to a point on an elliptic curve
- Auditable, fast
- 🔍 Unique tests ensure correctness. Wycheproof vectors included
- 🔻 Tree-shaking-friendly: there is no entry point, which ensures small size of your app
There are two parts of the package:
abstract/
directory specifies zero-dependency EC algorithms- root directory utilizes one dependency
@noble/hashes
and provides ready-to-use:- NIST curves secp192r1/P192, secp224r1/P224, secp256r1/P256, secp384r1/P384, secp521r1/P521
- SECG curve secp256k1
- pairing-friendly curves bls12-381, bn254
- ed25519/curve25519/x25519/ristretto, edwards448/curve448/x448 RFC7748 / RFC8032 / ZIP215 stuff
Curves incorporate work from previous noble packages (secp256k1, ed25519, bls12-381), which had security audits and were developed from 2019 to 2022. The goal is to replace them with lean UMD builds based on single-codebase noble-curves.
noble-crypto — high-security, easily auditable set of contained cryptographic libraries and tools.
- Minimal dependencies, small files
- Easily auditable TypeScript/JS code
- Supported in all major browsers and stable node.js versions
- All releases are signed with PGP keys
- Check out homepage & all libraries: curves (secp256k1, ed25519, bls12-381), hashes
Use NPM in node.js / browser, or include single file from GitHub's releases page:
npm install @noble/curves
The library does not have an entry point. It allows you to select specific primitives and drop everything else. If you only want to use secp256k1, just use the library with rollup or other bundlers. This is done to make your bundles tiny.
// Common.js and ECMAScript Modules (ESM)
import { secp256k1 } from '@noble/curves/secp256k1';
const key = secp256k1.utils.randomPrivateKey();
const pub = secp256k1.getPublicKey(key);
const msg = new Uint8Array(32).fill(1);
const sig = secp256k1.sign(msg, key);
secp256k1.verify(sig, msg, pub) === true;
sig.recoverPublicKey(msg) === pub;
const someonesPub = secp256k1.getPublicKey(secp256k1.utils.randomPrivateKey());
const shared = secp256k1.getSharedSecret(key, someonesPub);
All curves:
import { secp256k1 } from '@noble/curves/secp256k1';
import { ed25519, ed25519ph, ed25519ctx, x25519, RistrettoPoint } from '@noble/curves/ed25519';
import { ed448, ed448ph, ed448ctx, x448 } from '@noble/curves/ed448';
import { p256 } from '@noble/curves/p256';
import { p384 } from '@noble/curves/p384';
import { p521 } from '@noble/curves/p521';
import { pallas, vesta } from '@noble/curves/pasta';
import * as stark from '@noble/curves/stark';
import { bls12_381 } from '@noble/curves/bls12-381';
import { bn254 } from '@noble/curves/bn';
import { jubjub } from '@noble/curves/jubjub';
To define a custom curve, check out API below.
- Overview
- abstract/edwards: Twisted Edwards curve
- abstract/montgomery: Montgomery curve
- abstract/weierstrass: Short Weierstrass curve
- abstract/hash-to-curve: Hashing strings to curve points
- abstract/modular
- abstract/utils
There are following zero-dependency abstract algorithms:
import { bls } from '@noble/curves/abstract/bls';
import { twistedEdwards } from '@noble/curves/abstract/edwards';
import { montgomery } from '@noble/curves/abstract/montgomery';
import { weierstrass } from '@noble/curves/abstract/weierstrass';
import * as mod from '@noble/curves/abstract/modular';
import * as utils from '@noble/curves/abstract/utils';
They allow to define a new curve in a few lines of code:
import { Fp } from '@noble/curves/abstract/modular';
import { weierstrass } from '@noble/curves/abstract/weierstrass';
import { hmac } from '@noble/hashes/hmac';
import { sha256 } from '@noble/hashes/sha256';
import { concatBytes, randomBytes } from '@noble/hashes/utils';
const secp256k1 = weierstrass({
a: 0n,
b: 7n,
Fp: Fp(2n ** 256n - 2n ** 32n - 2n ** 9n - 2n ** 8n - 2n ** 7n - 2n ** 6n - 2n ** 4n - 1n),
n: 2n ** 256n - 432420386565659656852420866394968145599n,
Gx: 55066263022277343669578718895168534326250603453777594175500187360389116729240n,
Gy: 32670510020758816978083085130507043184471273380659243275938904335757337482424n,
hash: sha256,
hmac: (key: Uint8Array, ...msgs: Uint8Array[]) => hmac(sha256, key, concatBytes(...msgs)),
randomBytes,
});
- To initialize new curve, you must specify its variables, order (number of points on curve), field prime (over which the modular division would be done)
- All curves expose same generic interface:
getPublicKey()
,sign()
,verify()
functionsPoint
conforming toGroup
interface with add/multiply/double/negate/add/equals methodsCURVE
object with curve variables likeGx
,Gy
,Fp
(field),n
(order)utils
object withrandomPrivateKey()
,mod()
,invert()
methods (mod CURVE.P
)
- All arithmetics is done with JS bigints over finite fields, which is defined from
modular
sub-module - Many features require hashing, which is not provided.
@noble/hashes
can be used for this purpose. Any other library must conform to the CHash interface:export type CHash = { (message: Uint8Array): Uint8Array; blockLen: number; outputLen: number; create(): any; };
- w-ary non-adjacent form (wNAF) method with constant-time adjustments is used for point multiplication.
It is possible to enable precomputes for edwards & weierstrass curves.
Precomputes are calculated once (takes ~20-40ms), after that most
G
base point multiplications: for example,getPublicKey()
,sign()
and similar methods - would be much faster. Usecurve.utils.precompute()
to adjust precomputation window size - You could use optional special params to tune performance:
Fp({sqrt})
square root calculation, used for point decompressionendo
endomorphism options for Koblitz curves
Twisted Edwards curve's formula is: ax² + y² = 1 + dx²y².
- You must specify curve params
a
,d
, fieldFp
, ordern
, cofactorh
and coordinatesGx
,Gy
of generator point - For EdDSA signatures, params
hash
is also required.adjustScalarBytes
which instructs how to change private scalars could be specified
import { twistedEdwards } from '@noble/curves/abstract/edwards';
import { div } from '@noble/curves/abstract/modular';
import { sha512 } from '@noble/hashes/sha512';
const ed25519 = twistedEdwards({
a: -1n,
d: div(-121665n, 121666n, 2n ** 255n - 19n), // -121665n/121666n
P: 2n ** 255n - 19n,
n: 2n ** 252n + 27742317777372353535851937790883648493n,
h: 8n,
Gx: 15112221349535400772501151409588531511454012693041857206046113283949847762202n,
Gy: 46316835694926478169428394003475163141307993866256225615783033603165251855960n,
hash: sha512,
randomBytes,
adjustScalarBytes(bytes) {
// optional in general, mandatory in ed25519
bytes[0] &= 248;
bytes[31] &= 127;
bytes[31] |= 64;
return bytes;
},
} as const);
const key = ed25519.utils.randomPrivateKey();
const pub = ed25519.getPublicKey(key);
const msg = new TextEncoder().encode('hello world'); // strings not accepted, must be Uint8Array
const sig = ed25519.sign(msg, key);
ed25519.verify(sig, msg, pub) === true;
twistedEdwards()
returns CurveFn
of following type:
export type CurveFn = {
CURVE: ReturnType<typeof validateOpts>;
getPublicKey: (privateKey: PrivKey, isCompressed?: boolean) => Uint8Array;
sign: (message: Hex, privateKey: Hex) => Uint8Array;
verify: (sig: SigType, message: Hex, publicKey: PubKey) => boolean;
Point: PointConstructor;
ExtendedPoint: ExtendedPointConstructor;
Signature: SignatureConstructor;
utils: {
randomPrivateKey: () => Uint8Array;
getExtendedPublicKey: (key: PrivKey) => {
head: Uint8Array;
prefix: Uint8Array;
scalar: bigint;
point: PointType;
pointBytes: Uint8Array;
};
};
};
For now the module only contains methods for x-only ECDH on Curve25519 / Curve448 from RFC7748.
Proper Elliptic Curve Points are not implemented yet.
You must specify curve field, a24
special variable, montgomeryBits
, nByteLength
, and coordinate u
of generator point.
import { montgomery } from '@noble/curves/abstract/montgomery';
const x25519 = montgomery({
P: 2n ** 255n - 19n,
a24: 121665n, // TODO: change to a
montgomeryBits: 255,
nByteLength: 32,
Gu: '0900000000000000000000000000000000000000000000000000000000000000',
// Optional params
powPminus2: (x: bigint): bigint => {
return mod.pow(x, P - 2, P);
},
adjustScalarBytes(bytes) {
bytes[0] &= 248;
bytes[31] &= 127;
bytes[31] |= 64;
return bytes;
},
});
Short Weierstrass curve's formula is: y² = x³ + ax + b. Uses deterministic ECDSA from RFC6979. You can also specify extraEntropy
in sign()
.
- You must specify curve params:
a
,b
, fieldFp
, ordern
, cofactorh
and coordinatesGx
,Gy
of generator point - For ECDSA, you must specify
hash
,hmac
. It is also possible to recover keys from signatures - For ECDH, use
getSharedSecret(privKeyA, pubKeyB)
- Optional params are
lowS
(default value) andendo
(endomorphism)
import { Fp } from '@noble/curves/abstract/modular';
import { weierstrass } from '@noble/curves/abstract/weierstrass'; // Short Weierstrass curve
import { sha256 } from '@noble/hashes/sha256';
import { hmac } from '@noble/hashes/hmac';
import { concatBytes, randomBytes } from '@noble/hashes/utils';
const secp256k1 = weierstrass({
a: 0n,
b: 7n,
Fp: Fp(2n ** 256n - 2n ** 32n - 2n ** 9n - 2n ** 8n - 2n ** 7n - 2n ** 6n - 2n ** 4n - 1n),
n: 2n ** 256n - 432420386565659656852420866394968145599n,
Gx: 55066263022277343669578718895168534326250603453777594175500187360389116729240n,
Gy: 32670510020758816978083085130507043184471273380659243275938904335757337482424n,
hash: sha256,
hmac: (k: Uint8Array, ...msgs: Uint8Array[]) => hmac(sha256, key, concatBytes(...msgs)),
randomBytes,
// Optional params
h: 1n, // Cofactor
lowS: true, // Allow only low-S signatures by default in sign() and verify()
endo: {
// Endomorphism options for Koblitz curve
// Beta param
beta: 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501een,
// Split scalar k into k1, k2
splitScalar: (k: bigint) => {
// return { k1neg: true, k1: 512n, k2neg: false, k2: 448n };
},
},
});
// Usage
const key = secp256k1.utils.randomPrivateKey();
const pub = secp256k1.getPublicKey(key);
const msg = randomBytes(32);
const sig = secp256k1.sign(msg, key);
secp256k1.verify(sig, msg, pub); // true
sig.recoverPublicKey(msg); // == pub
const someonesPubkey = secp256k1.getPublicKey(secp256k1.utils.randomPrivateKey());
const shared = secp256k1.getSharedSecret(key, someonesPubkey);
weierstrass()
returns CurveFn
:
export type CurveFn = {
CURVE: ReturnType<typeof validateOpts>;
getPublicKey: (privateKey: PrivKey, isCompressed?: boolean) => Uint8Array;
getSharedSecret: (privateA: PrivKey, publicB: PubKey, isCompressed?: boolean) => Uint8Array;
sign: (msgHash: Hex, privKey: PrivKey, opts?: SignOpts) => SignatureType;
signUnhashed: (msg: Uint8Array, privKey: PrivKey, opts?: SignOpts) => SignatureType;
verify: (
signature: Hex | SignatureType,
msgHash: Hex,
publicKey: PubKey,
opts?: { lowS?: boolean }
) => boolean;
Point: PointConstructor;
ProjectivePoint: ProjectivePointConstructor;
Signature: SignatureConstructor;
utils: {
isValidPrivateKey(privateKey: PrivKey): boolean;
hashToPrivateKey: (hash: Hex) => Uint8Array;
randomPrivateKey: () => Uint8Array;
};
};
The module allows to hash arbitrary strings to elliptic curve points.
-
expand_message_xmd
(spec) produces a uniformly random byte string using a cryptographic hash function H that outputs b bits..function expand_message_xmd( msg: Uint8Array, DST: Uint8Array, lenInBytes: number, H: CHash ): Uint8Array; function expand_message_xof( msg: Uint8Array, DST: Uint8Array, lenInBytes: number, k: number, H: CHash ): Uint8Array;
-
hash_to_field(msg, count, options)
(spec) hashes arbitrary-length byte strings to a list of one or more elements of a finite field F.msg
a byte string containing the message to hashcount
the number of elements of F to outputoptions
{DST: string, p: bigint, m: number, k: number, expand: 'xmd' | 'xof', hash: H}
- Returns
[u_0, ..., u_(count - 1)]
, a list of field elements.
function hash_to_field(msg: Uint8Array, count: number, options: htfOpts): bigint[][]; type htfOpts = { // DST: a domain separation tag // defined in section 2.2.5 DST: string; // p: the characteristic of F // where F is a finite field of characteristic p and order q = p^m p: bigint; // m: the extension degree of F, m >= 1 // where F is a finite field of characteristic p and order q = p^m m: number; // k: the target security level for the suite in bits // defined in section 5.1 k: number; // option to use a message that has already been processed by // expand_message_xmd expand?: 'xmd' | 'xof'; // Hash functions for: expand_message_xmd is appropriate for use with a // wide range of hash functions, including SHA-2, SHA-3, BLAKE2, and others. // BBS+ uses blake2: https://github.com/hyperledger/aries-framework-go/issues/2247 // TODO: verify that hash is shake if expand==='xof' via types hash: CHash; };
Modular arithmetics utilities.
import { Fp, mod, invert, div, invertBatch, sqrt } from '@noble/curves/abstract/modular';
const fp = Fp(2n ** 255n - 19n); // Finite field over 2^255-19
fp.mul(591n, 932n);
fp.pow(481n, 11024858120n);
// Generic non-FP utils are also available
mod(21n, 10n); // 21 mod 10 == 1n; fixed version of 21 % 10
invert(17n, 10n); // invert(17) mod 10; modular multiplicative inverse
div(5n, 17n, 10n); // 5/17 mod 10 == 5 * invert(17) mod 10; division
invertBatch([1n, 2n, 4n], 21n); // => [1n, 11n, 16n] in one inversion
sqrt(21n, 73n); // √21 mod 73; square root
import * as utils from '@noble/curves/abstract/utils';
utils.bytesToHex(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.hexToBytes('deadbeef');
utils.hexToNumber();
utils.bytesToNumberBE(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.bytesToNumberLE(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.numberToBytesBE(123n);
utils.numberToBytesLE(123n);
utils.numberToHexUnpadded(123n);
utils.concatBytes(Uint8Array.from([0xde, 0xad]), Uint8Array.from([0xbe, 0xef]));
utils.nLength(255n);
utils.hashToPrivateScalar(sha512_of_something, secp256r1.n);
utils.equalBytes(Uint8Array.from([0xde]), Uint8Array.from([0xde]));
The library had no prior security audit.
Timing attack considerations: JIT-compiler and Garbage Collector make "constant time" extremely hard to achieve in a scripting language. Which means any other JS library can't have constant-timeness. Even statically typed Rust, a language without GC, makes it harder to achieve constant-time for some cases. If your goal is absolute security, don't use any JS lib — including bindings to native ones. Use low-level libraries & languages. Nonetheless we're targetting algorithmic constant time.
We consider infrastructure attacks like rogue NPM modules very important; that's why it's crucial to minimize the amount of 3rd-party dependencies & native bindings. If your app uses 500 dependencies, any dep could get hacked and you'll be downloading malware with every npm install
. Our goal is to minimize this attack vector.
Benchmark results on Apple M2 with node v18.10:
getPublicKey
secp256k1 x 5,241 ops/sec @ 190μs/op
P256 x 7,993 ops/sec @ 125μs/op
P384 x 3,819 ops/sec @ 261μs/op
P521 x 2,074 ops/sec @ 481μs/op
ed25519 x 8,390 ops/sec @ 119μs/op
ed448 x 3,224 ops/sec @ 310μs/op
sign
secp256k1 x 3,934 ops/sec @ 254μs/op
P256 x 5,327 ops/sec @ 187μs/op
P384 x 2,728 ops/sec @ 366μs/op
P521 x 1,594 ops/sec @ 626μs/op
ed25519 x 4,233 ops/sec @ 236μs/op
ed448 x 1,561 ops/sec @ 640μs/op
verify
secp256k1 x 731 ops/sec @ 1ms/op
P256 x 806 ops/sec @ 1ms/op
P384 x 353 ops/sec @ 2ms/op
P521 x 171 ops/sec @ 5ms/op
ed25519 x 860 ops/sec @ 1ms/op
ed448 x 313 ops/sec @ 3ms/op
getSharedSecret
secp256k1 x 445 ops/sec @ 2ms/op
recoverPublicKey
secp256k1 x 732 ops/sec @ 1ms/op
==== bls12-381 ====
getPublicKey x 817 ops/sec @ 1ms/op
sign x 50 ops/sec @ 19ms/op
verify x 34 ops/sec @ 28ms/op
pairing x 89 ops/sec @ 11ms/op
==== stark ====
pedersen
old x 85 ops/sec @ 11ms/op
noble x 1,216 ops/sec @ 822μs/op
verify
old x 302 ops/sec @ 3ms/op
noble x 698 ops/sec @ 1ms/op
- Clone the repository
npm install
to install build dependencies like TypeScriptnpm run build
to compile TypeScript codenpm run test
will execute all main tests
The MIT License (MIT)
Copyright (c) 2022 Paul Miller (https://paulmillr.com)
See LICENSE file.