-
Notifications
You must be signed in to change notification settings - Fork 54
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
梁
authored and
梁
committed
Jan 18, 2020
1 parent
d340f4e
commit af89a47
Showing
25 changed files
with
2,220 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2019 Shaoxiong Ji | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
# Data | ||
|
||
MNIST & CIFAR-10 datasets will be downloaded automatically by the torchvision package. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
# @python: 3.6 | ||
|
Empty file.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,363 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
# Python version: 3.6 | ||
|
||
import copy | ||
import os | ||
import itertools | ||
import numpy as np | ||
from scipy.stats import mode | ||
from torchvision import datasets, transforms, models | ||
import torch | ||
from torch import nn | ||
import torch.optim as optim | ||
from utils.sampling import fair_iid, fair_noniid | ||
from utils.options import args_parser | ||
from models.Update import LocalUpdate, LocalUpdate_noLG | ||
from models.Nets import MLP, CNNMnist, CNNCifar, ResnetCifar | ||
from models.Fed import FedAvg | ||
from models.test import test_img, test_img_local | ||
|
||
import pandas as pd | ||
|
||
from sklearn import metrics | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.preprocessing import StandardScaler | ||
from sklearn.utils.class_weight import compute_class_weight | ||
from torch.utils.data import TensorDataset | ||
from torch.utils.data import DataLoader | ||
|
||
from helpers import load_ICU_data, plot_distributions, _performance_text | ||
|
||
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" | ||
os.environ["CUDA_VISIBLE_DEVICES"]="0" | ||
|
||
import pdb | ||
|
||
def run_all(clf_all1, clf_all2, adv_all1, adv_all2, adv_all3): | ||
# parse args | ||
args = args_parser() | ||
args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu') | ||
|
||
# load ICU dataset and split users | ||
# load ICU data set | ||
X, y, Z = load_ICU_data('../fairness-in-ml/data/adult.data') | ||
|
||
if not args.iid: | ||
X = X[:30000] | ||
y = y[:30000] | ||
Z = Z[:30000] | ||
|
||
n_points = X.shape[0] | ||
n_features = X.shape[1] | ||
n_sensitive = Z.shape[1] | ||
|
||
print (n_features) | ||
|
||
# split into train/test set | ||
(X_train, X_test, y_train, y_test, Z_train, Z_test) = train_test_split(X, y, Z, test_size=0.5, stratify=y, random_state=7) | ||
|
||
# standardize the data | ||
scaler = StandardScaler().fit(X_train) | ||
scale_df = lambda df, scaler: pd.DataFrame(scaler.transform(df), columns=df.columns, index=df.index) | ||
X_train = X_train.pipe(scale_df, scaler) | ||
X_test = X_test.pipe(scale_df, scaler) | ||
|
||
class PandasDataSet(TensorDataset): | ||
def __init__(self, *dataframes): | ||
tensors = (self._df_to_tensor(df) for df in dataframes) | ||
super(PandasDataSet, self).__init__(*tensors) | ||
|
||
def _df_to_tensor(self, df): | ||
if isinstance(df, pd.Series): | ||
df = df.to_frame('dummy') | ||
return torch.from_numpy(df.values).float() | ||
|
||
def _df_to_tensor(df): | ||
if isinstance(df, pd.Series): | ||
df = df.to_frame('dummy') | ||
return torch.from_numpy(df.values).float() | ||
|
||
train_data = PandasDataSet(X_train, y_train, Z_train) | ||
test_data = PandasDataSet(X_test, y_test, Z_test) | ||
|
||
print('# train samples:', len(train_data)) # 15470 | ||
print('# test samples:', len(test_data)) | ||
|
||
batch_size = 32 | ||
|
||
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, drop_last=True) | ||
test_loader = DataLoader(test_data, batch_size=len(test_data), shuffle=True, drop_last=True) | ||
|
||
# sample users | ||
if args.iid: | ||
dict_users_train = fair_iid(train_data, args.num_users) | ||
dict_users_test = fair_iid(test_data, args.num_users) | ||
else: | ||
train_data = [_df_to_tensor(X_train), _df_to_tensor(y_train), _df_to_tensor(Z_train)] | ||
test_data = [_df_to_tensor(X_test), _df_to_tensor(y_test), _df_to_tensor(Z_test)] | ||
#import pdb; pdb.set_trace() | ||
dict_users_train, rand_set_all = fair_noniid(train_data, args.num_users, num_shards=100, num_imgs=150, train=True) | ||
dict_users_test, _ = fair_noniid(test_data, args.num_users, num_shards=100, num_imgs=150, train=False, rand_set_all=rand_set_all) | ||
|
||
train_data = [_df_to_tensor(X_train), _df_to_tensor(y_train), _df_to_tensor(Z_train)] | ||
test_data = [_df_to_tensor(X_test), _df_to_tensor(y_test), _df_to_tensor(Z_test)] | ||
|
||
class LocalClassifier(nn.Module): | ||
def __init__(self, n_features, n_hidden=32, p_dropout=0.2): | ||
super(LocalClassifier, self).__init__() | ||
self.network1 = nn.Sequential( | ||
nn.Linear(n_features, n_hidden), | ||
nn.ReLU(), | ||
nn.Dropout(p_dropout), | ||
nn.Linear(n_hidden, n_hidden), | ||
nn.ReLU(), | ||
nn.Dropout(p_dropout), | ||
nn.Linear(n_hidden, n_hidden) | ||
) | ||
self.network2 = nn.Sequential( | ||
nn.ReLU(), | ||
nn.Dropout(p_dropout), | ||
nn.Linear(n_hidden, 1) | ||
) | ||
|
||
def forward(self, x): | ||
mid = self.network1(x) | ||
final = torch.sigmoid(self.network2(mid)) | ||
return mid, final | ||
|
||
def pretrain_classifier(clf, data_loader, optimizer, criterion): | ||
losses = 0.0 | ||
for x, y, _ in data_loader: | ||
x = x.to(args.device) | ||
y = y.to(args.device) | ||
clf.zero_grad() | ||
mid, p_y = clf(x) | ||
loss = criterion(p_y, y) | ||
loss.backward() | ||
optimizer.step() | ||
losses += loss.item() | ||
print ('loss', losses/len(data_loader)) | ||
return clf | ||
|
||
def test_classifier(clf, data_loader): | ||
losses = 0 | ||
assert len(data_loader) == 1 | ||
with torch.no_grad(): | ||
for x, y_test, _ in data_loader: | ||
x = x.to(args.device) | ||
mid, y_pred = clf(x) | ||
y_pred = y_pred.cpu() | ||
clf_accuracy = metrics.accuracy_score(y_test, y_pred > 0.5) * 100 | ||
return clf_accuracy | ||
|
||
class Adversary(nn.Module): | ||
|
||
def __init__(self, n_sensitive, n_hidden=32): | ||
super(Adversary, self).__init__() | ||
self.network = nn.Sequential( | ||
nn.Linear(n_hidden, n_hidden), | ||
nn.ReLU(), | ||
nn.Linear(n_hidden, n_hidden), | ||
nn.ReLU(), | ||
nn.Linear(n_hidden, n_hidden), | ||
nn.ReLU(), | ||
nn.Linear(n_hidden, n_sensitive), | ||
) | ||
|
||
def forward(self, x): | ||
return torch.sigmoid(self.network(x)) | ||
|
||
def pretrain_adversary(adv, clf, data_loader, optimizer, criterion): | ||
losses = 0.0 | ||
for x, _, z in data_loader: | ||
x = x.to(args.device) | ||
z = z.to(args.device) | ||
mid, p_y = clf(x) | ||
mid = mid.detach() | ||
p_y = p_y.detach() | ||
adv.zero_grad() | ||
p_z = adv(mid) | ||
loss = (criterion(p_z.to(args.device), z.to(args.device)) * lambdas.to(args.device)).mean() | ||
loss.backward() | ||
optimizer.step() | ||
losses += loss.item() | ||
print ('loss', losses/len(data_loader)) | ||
return adv | ||
|
||
def test_adversary(adv, clf, data_loader): | ||
losses = 0 | ||
adv_accuracies = [] | ||
assert len(data_loader) == 1 | ||
with torch.no_grad(): | ||
for x, _, z_test in data_loader: | ||
x = x.to(args.device) | ||
mid, p_y = clf(x) | ||
mid = mid.detach() | ||
p_y = p_y.detach() | ||
p_z = adv(mid) | ||
for i in range(p_z.shape[1]): | ||
z_test_i = z_test[:,i] | ||
z_pred_i = p_z[:,i] | ||
z_pred_i = z_pred_i.cpu() | ||
adv_accuracy = metrics.accuracy_score(z_test_i, z_pred_i > 0.5) * 100 | ||
adv_accuracies.append(adv_accuracy) | ||
return adv_accuracies | ||
|
||
def train_both(clf, adv, data_loader, clf_criterion, adv_criterion, clf_optimizer, adv_optimizer, lambdas): | ||
# Train adversary | ||
adv_losses = 0.0 | ||
for x, y, z in data_loader: | ||
x = x.to(args.device) | ||
z = z.to(args.device) | ||
local, p_y = clf(x) | ||
adv.zero_grad() | ||
p_z = adv(local) | ||
loss_adv = (adv_criterion(p_z.to(args.device), z.to(args.device)) * lambdas.to(args.device)).mean() | ||
loss_adv.backward() | ||
adv_optimizer.step() | ||
adv_losses += loss_adv.item() | ||
print ('adversarial loss', adv_losses/len(data_loader)) | ||
|
||
# Train classifier on single batch | ||
clf_losses = 0.0 | ||
for x, y, z in data_loader: | ||
x = x.to(args.device) | ||
y = y.to(args.device) | ||
z = z.to(args.device) | ||
local, p_y = clf(x) | ||
p_z = adv(local) | ||
clf.zero_grad() | ||
if args.adv: | ||
clf_loss = clf_criterion(p_y.to(args.device), y.to(args.device)) - (adv_criterion(p_z.to(args.device), z.to(args.device)) * lambdas.to(args.device)).mean() | ||
else: | ||
clf_loss = clf_criterion(p_y.to(args.device), y.to(args.device)) | ||
clf_loss.backward() | ||
clf_optimizer.step() | ||
clf_losses += clf_loss.item() | ||
print ('classifier loss', clf_losses/len(data_loader)) | ||
return clf, adv | ||
|
||
def eval_global_performance_text(test_loader_i, global_model, adv_model): | ||
with torch.no_grad(): | ||
for test_x, test_y, test_z in test_loader_i: | ||
test_x = test_x.to(args.device) | ||
local_pred, clf_pred = global_model(test_x) | ||
adv_pred = adv_model(local_pred) | ||
|
||
y_post_clf = pd.Series(clf_pred.cpu().numpy().ravel(), index=y_test[list(dict_users_train[idx])].index) | ||
Z_post_adv = pd.DataFrame(adv_pred.cpu().numpy(), columns=Z_test.columns) | ||
|
||
clf_roc_auc,clf_accuracy,adv_acc1,adv_acc2,adv_roc_auc = _performance_text(test_y, test_z, y_post_clf, Z_post_adv, epoch=None) | ||
return clf_roc_auc,clf_accuracy,adv_acc1,adv_acc2,adv_roc_auc | ||
|
||
lambdas = torch.Tensor([30.0, 30.0]) | ||
net_local_list = [] | ||
|
||
print ('\n\n======================== STARTING LOCAL TRAINING ========================\n\n\n') | ||
|
||
for idx in range(args.num_users): | ||
train_data_i_raw = [torch.FloatTensor(bb[list(dict_users_train[idx])]) for bb in train_data] | ||
train_data_i = TensorDataset(train_data_i_raw[0],train_data_i_raw[1],train_data_i_raw[2]) | ||
train_loader_i = torch.utils.data.DataLoader(train_data_i, batch_size=batch_size, shuffle=False, num_workers=4) | ||
|
||
test_data_i_raw = [torch.FloatTensor(bb[list(dict_users_train[idx])]) for bb in test_data] | ||
test_data_i = TensorDataset(test_data_i_raw[0],test_data_i_raw[1],test_data_i_raw[2]) | ||
test_loader_i = torch.utils.data.DataLoader(test_data_i, batch_size=len(test_data_i), shuffle=False, num_workers=4) | ||
|
||
net_local_list.append([train_loader_i,test_loader_i]) | ||
|
||
class GlobalClassifier(nn.Module): | ||
def __init__(self, n_features, n_hidden=32, p_dropout=0.2): | ||
super(GlobalClassifier, self).__init__() | ||
self.network1 = nn.Sequential( | ||
nn.Linear(n_features, n_hidden), | ||
nn.ReLU(), | ||
nn.Dropout(p_dropout), | ||
nn.Linear(n_hidden, n_hidden), | ||
nn.ReLU(), | ||
nn.Dropout(p_dropout), | ||
nn.Linear(n_hidden, n_hidden) | ||
) | ||
self.network2 = nn.Sequential( | ||
nn.ReLU(), | ||
nn.Dropout(p_dropout), | ||
nn.Linear(n_hidden, 1) | ||
) | ||
|
||
def forward(self, x): | ||
mid = self.network1(x) | ||
final = torch.sigmoid(self.network2(mid)) | ||
return mid, final | ||
|
||
# build global model | ||
global_clf = GlobalClassifier(n_features=n_features).to(args.device) | ||
global_clf_criterion = nn.BCELoss().to(args.device) | ||
global_clf_optimizer = optim.Adam(global_clf.parameters(), lr=0.01) | ||
|
||
adv_model = Adversary(Z_train.shape[1]).to(args.device) | ||
adv_criterion = nn.BCELoss(reduce=False).to(args.device) | ||
adv_optimizer = optim.Adam(adv_model.parameters(), lr=0.01) | ||
|
||
# copy weights | ||
w_glob = global_clf.state_dict() | ||
adv_glob = adv_model.state_dict() | ||
|
||
print ('\n\n======================== STARTING GLOBAL TRAINING ========================\n\n\n') | ||
|
||
global_epochs = 10 | ||
for iter in range(global_epochs): | ||
w_locals, adv_locals, w_loss_locals, adv_loss_locals = [], [], [], [] | ||
for idx in range(args.num_users): | ||
print ('\n\n======================== GLOBAL TRAINING, ITERATION %d, USER %d ========================\n\n\n' %(iter,idx)) | ||
train_loader_i,test_loader_i = net_local_list[idx] | ||
|
||
local = LocalUpdate_noLG(args=args, dataset=train_loader_i) | ||
w, w_loss, adv, adv_loss = local.train(global_net=copy.deepcopy(global_clf).to(args.device), adv_model=copy.deepcopy(adv_model).to(args.device), lambdas=lambdas) | ||
|
||
w_locals.append(copy.deepcopy(w)) | ||
w_loss_locals.append(copy.deepcopy(w_loss)) | ||
|
||
adv_locals.append(copy.deepcopy(adv)) | ||
adv_loss_locals.append(copy.deepcopy(adv_loss)) | ||
|
||
w_glob = FedAvg(w_locals) | ||
# copy weight to net_glob | ||
global_clf.load_state_dict(w_glob) | ||
|
||
adv_glob = FedAvg(adv_locals) | ||
# copy weight to net_glob | ||
adv_model.load_state_dict(adv_glob) | ||
|
||
for idx in range(args.num_users): | ||
train_loader_i,test_loader_i = net_local_list[idx] | ||
|
||
print ('======================== local and global training: evaluating _global_performance_text on device %d ========================' %idx) | ||
clf_roc_auc,clf_accuracy,adv_acc1,adv_acc2,adv_roc_auc = eval_global_performance_text(test_loader_i, global_clf, adv_model) | ||
print ('======================== by now the global classifier should work better than local classifier ========================') | ||
|
||
clf_all1.append(clf_roc_auc) | ||
clf_all2.append(clf_accuracy) | ||
adv_all1.append(adv_acc1) | ||
adv_all2.append(adv_acc2) | ||
adv_all3.append(adv_roc_auc) | ||
|
||
print ('clf_all1', np.mean(np.array(clf_all1)), np.std(np.array(clf_all1))) | ||
print ('clf_all2', np.mean(np.array(clf_all2)), np.std(np.array(clf_all2))) | ||
print ('adv_all1', np.mean(np.array(adv_all1)), np.std(np.array(adv_all1))) | ||
print ('adv_all2', np.mean(np.array(adv_all2)), np.std(np.array(adv_all2))) | ||
print ('adv_all3', np.mean(np.array(adv_all3)), np.std(np.array(adv_all3))) | ||
return clf_all1, clf_all2, adv_all1, adv_all2, adv_all3 | ||
|
||
|
||
if __name__ == '__main__': | ||
clf_all1, clf_all2, adv_all1, adv_all2, adv_all3 = [], [], [], [], [] | ||
for _ in range(10): | ||
clf_all1, clf_all2, adv_all1, adv_all2, adv_all3 = run_all(clf_all1, clf_all2, adv_all1, adv_all2, adv_all3) | ||
print ('final') | ||
print ('clf_all1', np.mean(np.array(clf_all1)), np.std(np.array(clf_all1))) | ||
print ('clf_all2', np.mean(np.array(clf_all2)), np.std(np.array(clf_all2))) | ||
print ('adv_all1', np.mean(np.array(adv_all1)), np.std(np.array(adv_all1))) | ||
print ('adv_all2', np.mean(np.array(adv_all2)), np.std(np.array(adv_all2))) | ||
print ('adv_all3', np.mean(np.array(adv_all3)), np.std(np.array(adv_all3))) | ||
|
Oops, something went wrong.