Skip to content

po-sheng/Meta_Transferring_for_Deblurring

Repository files navigation

Meta Transferring for Deblurring (BMVC 2022)

Pytorch implementation of "Meta Transferring for Deblurring" (BMVC 2022).
The implementation use part of the code from MPRNet, MTRNN, Restormer, and CDVD-TSP.

Environment

  • Nvidia A5000 GPU
  • cuda 11.3
  • pytorch == 1.10.1+cu113
  • numpy == 1.22.0

Installation

pip3 install -r requirements.txt

Meta training

  1. Download "GOPRO" dataset or any dataset that you want to use.
  2. Move pre-trained weights into ./weights.
  3. Modify the arguments in meta training script and run the script.
sh meta_train.sh

Meta testing

  1. Download "DVD", "REDS",or "RealBlur" dataset or any dataset that you want to test.
  2. Modify the arguments in meta testing script and run the script.
sh meta_test_script.sh

Important args

  • save_dir: The saved path of current experiment directory
  • dataset: The dataset name (GOPRO/DVD/REDS/RealBlur)
  • dataset_dir: The path to dataset
  • deblur(reblur)_lr: Learning rate for deblurring(reblurring) model
  • deblur_model: The deblurring model name (mprnet/mtrnn/restormer/cdvd_tsp)
  • gan: Using adversarial loss during inner update or not
  • cycle_update: Using cycle consistency loss during inner update or not
  • n_updates: # of support patches during inner update
  • deblur(reblur/gan)_model_path: The path of pre-trained model weight

Train/Test reblurring model

We train our reblurring model for 1000 epochs.

# Training
sh train.sh

# Testing
sh test.sh

Model/Dataset extension

  • Model

    • Modify ./model/setting.yaml
    • Modify ./model/basicModule.py
    • Modify ./loss/loss.py
  • Dataset

    • Create ./dataset/meta_(modelName).py
    • Copy ./dataset/meta_gopro.py to ./dataset/meta_(modelName).py
    • Modify dataset hierachy in the file

Citation

@inproceedings{liu2022meta,
  title={Meta Transferring for Deblurring},
  author={Liu, Po-Sheng and Tsai, Fu-Jen and Peng, Yan-Tsung and Tsai, Chung-Chi and Lin, Chia-Wen and Lin, Yen-Yu},
  booktitle={BMVC},
  year={2022}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published