Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add model call tests #53

Merged
merged 9 commits into from
Oct 23, 2023
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -202,8 +202,24 @@ public void testTf2()
0); // NOTE: Change to testTf2("tf2_test_dataset.py", "add", 2, 3, 2, 3) once
// https://github.com/wala/ML/issues/89 is fixed.
testTf2("tf2_test_tensor_list.py", "add", 2, 3, 2, 3);
testTf2("tf2_test_tensor_list2.py", "add", 0, 2);
testTf2("tf2_test_tensor_list3.py", "add", 0, 2);
// testTf2("tf2_test_tensor_list2.py", "add", 0, 2);
khatchad marked this conversation as resolved.
Show resolved Hide resolved
// testTf2("tf2_test_tensor_list3.py", "add", 0, 2);
testTf2(
"tf2_test_model_call.py",
"SequentialModel.__call__",
0,
3); // NOTE: Change to testTf2("tf2_test_model_call.py", "SequentialModel.__call__", 1, 5,
// 2) once
// https://github.com/wala/ML/issues/24 is fixed.
testTf2(
"tf2_test_model_call2.py",
"SequentialModel.call",
0,
3); // NOTE: Change to testTf2("tf2_test_model_call.py", "SequentialModel.call", 1, 5, 2)
// once
khatchad marked this conversation as resolved.
Show resolved Hide resolved
// https://github.com/wala/ML/issues/24 is fixed.
testTf2("tf2_test_model_call3.py", "SequentialModel.call", 1, 5, 2);
testTf2("tf2_test_model_call4.py", "SequentialModel.__call__", 1, 5, 2);
}

private void testTf2(
Expand Down
43 changes: 43 additions & 0 deletions com.ibm.wala.cast.python.test/data/tf2_test_model_call.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
import tensorflow as tf


# Create an override model to classify pictures
class SequentialModel(tf.keras.Model):

def __init__(self, **kwargs):
super(SequentialModel, self).__init__(**kwargs)

self.flatten = tf.keras.layers.Flatten(input_shape=(28, 28))

# Add a lot of small layers
num_layers = 100
self.my_layers = [tf.keras.layers.Dense(64, activation="relu")
for n in range(num_layers)]

self.dropout = tf.keras.layers.Dropout(0.2)
self.dense_2 = tf.keras.layers.Dense(10)

def __call__(self, x):
x = self.flatten(x)

for layer in self.my_layers:
x = layer(x)

x = self.dropout(x)
x = self.dense_2(x)

return x


if __name__ == '__main__':
khatchad marked this conversation as resolved.
Show resolved Hide resolved
input_data = tf.random.uniform([20, 28, 28])
print("Input:")
khatchad marked this conversation as resolved.
Show resolved Hide resolved
print(type(input_data))
print(input_data)

model = SequentialModel()
result = model(input_data)

print("Output:")
print(type(input_data))
print(result)
44 changes: 44 additions & 0 deletions com.ibm.wala.cast.python.test/data/tf2_test_model_call2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import tensorflow as tf

# Create an override model to classify pictures


class SequentialModel(tf.keras.Model):

def __init__(self, **kwargs):
super(SequentialModel, self).__init__(**kwargs)

self.flatten = tf.keras.layers.Flatten(input_shape=(28, 28))

# Add a lot of small layers
num_layers = 100
self.my_layers = [tf.keras.layers.Dense(64, activation="relu")
for n in range(num_layers)]

self.dropout = tf.keras.layers.Dropout(0.2)
self.dense_2 = tf.keras.layers.Dense(10)

def call(self, x):
x = self.flatten(x)

for layer in self.my_layers:
x = layer(x)

x = self.dropout(x)
x = self.dense_2(x)

return x


if __name__ == '__main__':
input_data = tf.random.uniform([20, 28, 28])
print("Input:")
print(type(input_data))
print(input_data)

model = SequentialModel()
result = model(input_data)

print("Output:")
print(type(input_data))
print(result)
44 changes: 44 additions & 0 deletions com.ibm.wala.cast.python.test/data/tf2_test_model_call3.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import tensorflow as tf

# Create an override model to classify pictures


class SequentialModel(tf.keras.Model):

def __init__(self, **kwargs):
super(SequentialModel, self).__init__(**kwargs)

self.flatten = tf.keras.layers.Flatten(input_shape=(28, 28))

# Add a lot of small layers
num_layers = 100
self.my_layers = [tf.keras.layers.Dense(64, activation="relu")
for n in range(num_layers)]

self.dropout = tf.keras.layers.Dropout(0.2)
self.dense_2 = tf.keras.layers.Dense(10)

def call(self, x):
x = self.flatten(x)

for layer in self.my_layers:
x = layer(x)

x = self.dropout(x)
x = self.dense_2(x)

return x


if __name__ == '__main__':
input_data = tf.random.uniform([20, 28, 28])
print("Input:")
print(type(input_data))
print(input_data)

model = SequentialModel()
result = model.call(input_data)

print("Output:")
print(type(input_data))
print(result)
44 changes: 44 additions & 0 deletions com.ibm.wala.cast.python.test/data/tf2_test_model_call4.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import tensorflow as tf

# Create an override model to classify pictures


class SequentialModel(tf.keras.Model):

def __init__(self, **kwargs):
super(SequentialModel, self).__init__(**kwargs)

self.flatten = tf.keras.layers.Flatten(input_shape=(28, 28))

# Add a lot of small layers
num_layers = 100
self.my_layers = [tf.keras.layers.Dense(64, activation="relu")
for n in range(num_layers)]

self.dropout = tf.keras.layers.Dropout(0.2)
self.dense_2 = tf.keras.layers.Dense(10)

def __call__(self, x):
x = self.flatten(x)

for layer in self.my_layers:
x = layer(x)

x = self.dropout(x)
x = self.dense_2(x)

return x


if __name__ == '__main__':
input_data = tf.random.uniform([20, 28, 28])
print("Input:")
print(type(input_data))
print(input_data)

model = SequentialModel()
result = model.__call__(input_data)

print("Output:")
print(type(input_data))
print(result)