Skip to content

poojasrinivass/NLRL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Neural Logic Reinforcement Learing

Implementaion of Neural Logic Reinforcement learning and several benchmarks. Neural Logic Reinforcement Learning uses deep reinforcement leanring methods to train a differential indutive logic progamming architecture, obtaining explainable and generalizable policies. Paper accepted by ICML2019.

Enviornments

Developed in python2.7, Linux enviornment.

Dependencies

  • Create a virtual env
  • numpy: downgrade to numpy v 1.14.0 using "python -m pip install numpy=1.14.0" in your virtual env
  • tensorflow

User Guide

  • use main.py to run the experiments
  • --mode= to specify the running mode, can be "train" or "generalize", where generalize means to run a generalization test.
  • --task= to specify the task, can be "stack", "unstack", "on" or "cliffwalking".
  • --algo to specify agent type, can be "DILP", "NN" or "Random"
  • --name to specify the id of this run.
  • for example: python main.py --mode=train --algo=DILP --task=unstack --name=ICMLtest

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •