Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove usage of torch::autograd::Variable #369

Merged
merged 1 commit into from
Dec 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 8 additions & 9 deletions pyg_lib/csrc/ops/autograd/matmul_kernel.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,6 @@ namespace ops {

namespace {

using torch::autograd::Variable;
using torch::autograd::variable_list;

std::vector<at::Tensor> concat(std::vector<at::Tensor> t1,
Expand Down Expand Up @@ -50,7 +49,7 @@ class GroupedMatmul : public torch::autograd::Function<GroupedMatmul> {
}
} else {
for (size_t i = 0; i < other.size(); ++i)
other_grad.push_back(Variable());
other_grad.push_back(at::Tensor());
}

variable_list input_grad;
Expand All @@ -60,7 +59,7 @@ class GroupedMatmul : public torch::autograd::Function<GroupedMatmul> {
input_grad = grouped_matmul(input, grad_outs);
} else {
for (size_t i = 0; i < input.size(); ++i)
input_grad.push_back(Variable());
input_grad.push_back(at::Tensor());
}
return concat(input_grad, other_grad);
}
Expand All @@ -69,11 +68,11 @@ class GroupedMatmul : public torch::autograd::Function<GroupedMatmul> {
class SegmentMatmul : public torch::autograd::Function<SegmentMatmul> {
public:
static variable_list forward(torch::autograd::AutogradContext* ctx,
const Variable& input,
const at::Tensor& input,
const at::Tensor& ptr,
const Variable& other) {
const at::Tensor& other) {
at::AutoDispatchBelowADInplaceOrView g;
Variable out = segment_matmul(input, ptr, other);
at::Tensor out = segment_matmul(input, ptr, other);
ctx->save_for_backward({input, ptr, other});
return {out};
}
Expand All @@ -84,13 +83,13 @@ class SegmentMatmul : public torch::autograd::Function<SegmentMatmul> {
auto saved = ctx->get_saved_variables();
auto input = saved[0], ptr = saved[1], other = saved[2];

auto input_grad = Variable();
auto input_grad = at::Tensor();
if (torch::autograd::any_variable_requires_grad({input})) {
auto other_t = other.transpose(-2, -1);
input_grad = segment_matmul(grad_out, ptr, other_t);
}

auto other_grad = Variable();
auto other_grad = at::Tensor();
if (torch::autograd::any_variable_requires_grad({other})) {
auto size = pyg::utils::size_from_ptr(ptr).cpu();
// TODO (matthias) Allow for other types than `int64_t`.
Expand All @@ -107,7 +106,7 @@ class SegmentMatmul : public torch::autograd::Function<SegmentMatmul> {
other_grad = at::stack(others_grad);
}

return {input_grad, Variable(), other_grad};
return {input_grad, at::Tensor(), other_grad};
}
};

Expand Down
13 changes: 6 additions & 7 deletions pyg_lib/csrc/ops/autograd/sampled_kernel.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -7,19 +7,18 @@ namespace ops {

namespace {

using torch::autograd::Variable;
using torch::autograd::variable_list;

class SampledOp : public torch::autograd::Function<SampledOp> {
public:
static variable_list forward(torch::autograd::AutogradContext* ctx,
const Variable& left,
const Variable& right,
const at::Tensor& left,
const at::Tensor& right,
const at::optional<at::Tensor> left_index,
const at::optional<at::Tensor> right_index,
const std::string fn) {
at::AutoDispatchBelowADInplaceOrView g;
Variable out = sampled_op(left, right, left_index, right_index, fn);
at::Tensor out = sampled_op(left, right, left_index, right_index, fn);
ctx->saved_data["has_left_index"] = left_index.has_value();
ctx->saved_data["has_right_index"] = right_index.has_value();
ctx->saved_data["fn"] = fn;
Expand Down Expand Up @@ -48,7 +47,7 @@ class SampledOp : public torch::autograd::Function<SampledOp> {
}
auto fn = ctx->saved_data["fn"].toStringRef();

auto grad_left = Variable();
auto grad_left = at::Tensor();
if (torch::autograd::any_variable_requires_grad({left})) {
grad_left = grad_out;

Expand All @@ -66,7 +65,7 @@ class SampledOp : public torch::autograd::Function<SampledOp> {
}
}

auto grad_right = Variable();
auto grad_right = at::Tensor();
if (torch::autograd::any_variable_requires_grad({right})) {
grad_right = grad_out;

Expand All @@ -91,7 +90,7 @@ class SampledOp : public torch::autograd::Function<SampledOp> {
}
}

return {grad_left, grad_right, Variable(), Variable(), Variable()};
return {grad_left, grad_right, at::Tensor(), at::Tensor(), at::Tensor()};
}
};

Expand Down
9 changes: 4 additions & 5 deletions pyg_lib/csrc/ops/autograd/softmax_kernel.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -7,18 +7,17 @@ namespace ops {

namespace {

using torch::autograd::Variable;
using torch::autograd::variable_list;

class SoftmaxCSR : public torch::autograd::Function<SoftmaxCSR> {
public:
static variable_list forward(torch::autograd::AutogradContext* ctx,
const Variable& src,
const at::Tensor& src,
const at::Tensor& ptr,
const int64_t dim) {
at::AutoDispatchBelowADInplaceOrView g;

Variable out = softmax_csr(src, ptr, dim);
at::Tensor out = softmax_csr(src, ptr, dim);
ctx->saved_data["dim"] = dim;
ctx->save_for_backward({src, out, ptr});

Expand All @@ -34,12 +33,12 @@ class SoftmaxCSR : public torch::autograd::Function<SoftmaxCSR> {
const auto ptr = saved[2];
const auto dim = ctx->saved_data["dim"].toInt();

auto src_grad = Variable();
auto src_grad = at::Tensor();
if (torch::autograd::any_variable_requires_grad({src})) {
src_grad = softmax_csr_backward(out, out_grad, ptr, dim);
}

return {src_grad, Variable(), Variable()};
return {src_grad, at::Tensor(), at::Tensor()};
}
};

Expand Down
Loading