Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use multi-threading and parallel hash map in CPUHashMap #380

Merged
merged 7 commits into from
Jan 13, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,7 @@ if (NOT "$ENV{EXTERNAL_PHMAP_INCLUDE_DIR}" STREQUAL "")
include_directories($ENV{EXTERNAL_PHMAP_INCLUDE_DIR})
else()
set(PHMAP_DIR third_party/parallel-hashmap)
include_directories(${PHMAP_DIR})
target_include_directories(${PROJECT_NAME} PRIVATE ${PHMAP_DIR})
endif()

Expand Down
31 changes: 20 additions & 11 deletions benchmark/classes/hash_map.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,21 +19,28 @@
if args.device == 'cpu':
num_warmups, num_steps = num_warmups // 10, num_steps // 10

key = torch.randperm(args.num_keys, device=args.device)
query = torch.randperm(args.num_queries, device=args.device)
query = query[:args.num_queries]
max_value = torch.iinfo(torch.long).max

key1 = torch.randint(0, max_value, (args.num_keys, ), dtype=torch.long,
device=args.device)
query1 = key1[torch.randperm(key1.size(0), device=args.device)]
query1 = query1[:args.num_queries]

key2 = torch.randperm(args.num_keys, device=args.device)
query2 = torch.randperm(args.num_queries, device=args.device)
query2 = query2[:args.num_queries]

t_init = t_get = 0
for i in range(num_warmups + num_steps):
torch.cuda.synchronize()
t_start = time.perf_counter()
hash_map = HashMap(key)
hash_map = HashMap(key1)
torch.cuda.synchronize()
if i >= num_warmups:
t_init += time.perf_counter() - t_start

t_start = time.perf_counter()
hash_map.get(query)
out1 = hash_map.get(query1)
torch.cuda.synchronize()
if i >= num_warmups:
t_get += time.perf_counter() - t_start
Expand All @@ -48,13 +55,13 @@
t_start = time.perf_counter()
hash_map = torch.full((args.num_keys, ), fill_value=-1,
dtype=torch.long, device=args.device)
hash_map[key] = torch.arange(args.num_keys)
hash_map[key2] = torch.arange(args.num_keys)
torch.cuda.synchronize()
if i >= num_warmups:
t_init += time.perf_counter() - t_start

t_start = time.perf_counter()
hash_map[query]
out2 = hash_map[query2]
torch.cuda.synchronize()
if i >= num_warmups:
t_get += time.perf_counter() - t_start
Expand All @@ -63,20 +70,22 @@
print(f' Memory Get: {t_get / num_steps:.4f}s')
print('=====================')

if key.is_cpu:
if key1.is_cpu:
t_init = t_get = 0
for i in range(num_warmups + num_steps):
t_start = time.perf_counter()
hash_map = pd.CategoricalDtype(categories=key.numpy(),
hash_map = pd.CategoricalDtype(categories=key1.numpy(),
ordered=True)
if i >= num_warmups:
t_init += time.perf_counter() - t_start

t_start = time.perf_counter()
ser = pd.Series(query.numpy(), dtype=hash_map)
ser.cat.codes.to_numpy()
ser = pd.Series(query1.numpy(), dtype=hash_map)
out3 = ser.cat.codes.to_numpy()
if i >= num_warmups:
t_get += time.perf_counter() - t_start

print(f' Pandas Init: {t_init / num_steps:.4f}s')
print(f' Pandas Get: {t_get / num_steps:.4f}s')

assert out1.equal(torch.tensor(out3))
59 changes: 31 additions & 28 deletions pyg_lib/csrc/classes/cpu/hash_map.cpp
Original file line number Diff line number Diff line change
@@ -1,32 +1,36 @@
#include "hash_map.h"

#include <ATen/Parallel.h>
#include <torch/library.h>

namespace pyg {
namespace classes {

CPUHashMap::CPUHashMap(const at::Tensor& key) {
template <typename KeyType>
CPUHashMap<KeyType>::CPUHashMap(const at::Tensor& key) {
at::TensorArg key_arg{key, "key", 0};
at::CheckedFrom c{"HashMap.init"};
at::checkDeviceType(c, key, at::DeviceType::CPU);
at::checkDim(c, key_arg, 1);
at::checkContiguous(c, key_arg);

// clang-format off
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Bool,
key.scalar_type(),
"cpu_hash_map_init",
[&] {
const auto key_data = key.data_ptr<scalar_t>();
for (int64_t i = 0; i < key.numel(); ++i) {
auto [iterator, inserted] = map_.insert({key_data[i], i});
TORCH_CHECK(inserted, "Found duplicated key.");
}
});
// clang-format on
map_.reserve(key.numel());

const auto num_threads = at::get_num_threads();
const auto grain_size = std::max(
(key.numel() + num_threads - 1) / num_threads, at::internal::GRAIN_SIZE);
const auto key_data = key.data_ptr<KeyType>();

at::parallel_for(0, key.numel(), grain_size, [&](int64_t beg, int64_t end) {
for (int64_t i = beg; i < end; ++i) {
auto [iterator, inserted] = map_.insert({key_data[i], i});
TORCH_CHECK(inserted, "Found duplicated key.");
}
});
};

at::Tensor CPUHashMap::get(const at::Tensor& query) {
template <typename KeyType>
at::Tensor CPUHashMap<KeyType>::get(const at::Tensor& query) {
at::TensorArg query_arg{query, "query", 0};
at::CheckedFrom c{"HashMap.get"};
at::checkDeviceType(c, query, at::DeviceType::CPU);
Expand All @@ -37,27 +41,26 @@ at::Tensor CPUHashMap::get(const at::Tensor& query) {
const auto out = at::empty({query.numel()}, options);
auto out_data = out.data_ptr<int64_t>();

// clang-format off
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Bool,
query.scalar_type(),
"cpu_hash_map_get",
[&] {
const auto query_data = query.data_ptr<scalar_t>();
const auto num_threads = at::get_num_threads();
const auto grain_size =
std::max((query.numel() + num_threads - 1) / num_threads,
at::internal::GRAIN_SIZE);
const auto query_data = query.data_ptr<int64_t>();

for (size_t i = 0; i < query.numel(); ++i) {
auto it = map_.find(query_data[i]);
out_data[i] = (it != map_.end()) ? it->second : -1;
}
});
// clang-format on
at::parallel_for(0, query.numel(), grain_size, [&](int64_t beg, int64_t end) {
for (int64_t i = beg; i < end; ++i) {
auto it = map_.find(query_data[i]);
out_data[i] = (it != map_.end()) ? it->second : -1;
}
});

return out;
}

TORCH_LIBRARY(pyg, m) {
m.class_<CPUHashMap>("CPUHashMap")
m.class_<CPUHashMap<int64_t>>("CPUHashMap")
.def(torch::init<at::Tensor&>())
.def("get", &CPUHashMap::get);
.def("get", &CPUHashMap<int64_t>::get);
}

} // namespace classes
Expand Down
16 changes: 12 additions & 4 deletions pyg_lib/csrc/classes/cpu/hash_map.h
Original file line number Diff line number Diff line change
@@ -1,21 +1,29 @@
#pragma once

#include <ATen/ATen.h>
#include <variant>
#include "parallel_hashmap/phmap.h"

namespace pyg {
namespace classes {

template <typename KeyType>
struct CPUHashMap : torch::CustomClassHolder {
public:
using KeyType = std::
variant<bool, uint8_t, int8_t, int16_t, int32_t, int64_t, float, double>;
using ValueType = int64_t;

CPUHashMap(const at::Tensor& key);
at::Tensor get(const at::Tensor& query);

private:
std::unordered_map<KeyType, int64_t> map_;
phmap::parallel_flat_hash_map<
KeyType,
ValueType,
phmap::priv::hash_default_hash<KeyType>,
phmap::priv::hash_default_eq<KeyType>,
phmap::priv::Allocator<std::pair<const KeyType, ValueType>>,
8,
phmap::NullMutex>
map_;
};

} // namespace classes
Expand Down
2 changes: 1 addition & 1 deletion test/csrc/classes/test_hash_map.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ TEST(CPUHashMapTest, BasicAssertions) {
auto options = at::TensorOptions().dtype(at::kLong);
auto key = at::tensor({0, 10, 30, 20}, options);

auto map = pyg::classes::CPUHashMap(key);
auto map = pyg::classes::CPUHashMap<int64_t>(key);

auto query = at::tensor({30, 10, 20, 40}, options);
auto expected = at::tensor({2, 1, 3, -1}, options);
Expand Down
Loading