-
Notifications
You must be signed in to change notification settings - Fork 207
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add CUTLASS-based W4A4 #1515
base: main
Are you sure you want to change the base?
Add CUTLASS-based W4A4 #1515
Changes from 2 commits
1d350d6
7e277df
a44df9e
2487eb9
de167f0
fe1f0eb
908f464
883384b
ee34bb2
f513523
9a1ce25
b9db0f1
f42fc65
a43f804
5c30303
d7c0896
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,231 @@ | ||
#include <torch/extension.h> | ||
#include <ATen/cuda/CUDAContext.h> | ||
|
||
// copied from s8s4_linear_cutlass.cu | ||
#if defined(TORCHAO_USE_CUTLASS) && !defined(_WIN32) && \ | ||
defined(CUDA_VERSION) && (CUDA_VERSION >= 11080) | ||
#define BUILD_INT4_MM_CUTLASS | ||
#endif | ||
|
||
#if defined(BUILD_INT4_MM_CUTLASS) | ||
#include "cutlass/cutlass.h" | ||
#include "cutlass/gemm/device/gemm_universal.h" | ||
#include "cutlass/gemm/device/gemm.h" | ||
#include "cutlass/epilogue/threadblock/fusion/visitors.hpp" | ||
#include "cutlass/gemm/kernel/default_gemm_universal_with_visitor.h" | ||
#include "cutlass/gemm/device/gemm_universal_adapter.h" | ||
|
||
#define CUTLASS_STATUS_CHECK(status) \ | ||
{ \ | ||
TORCH_CHECK(status == cutlass::Status::kSuccess, \ | ||
__func__, " : Got CUTLASS error: ", \ | ||
cutlassGetStatusString(status)); \ | ||
} | ||
#endif | ||
|
||
namespace torchao { | ||
|
||
#if defined(BUILD_INT4_MM_CUTLASS) | ||
// define common params | ||
using ElementA = cutlass::int4b_t; | ||
using ElementB = cutlass::int4b_t; | ||
using ElementAccumulator = int32_t; | ||
using OpClass = cutlass::arch::OpClassTensorOp; | ||
using ArchTag = cutlass::arch::Sm80; | ||
|
||
// how many elements to load at a time -> load 128-bit = 32 x 4-bit | ||
constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value; | ||
constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value; | ||
#endif | ||
|
||
// we will do input checks in python. A and B are stored as int8 | ||
torch::Tensor int4_mm_cutlass(torch::Tensor A, torch::Tensor B) { | ||
#if defined(BUILD_INT4_MM_CUTLASS) | ||
int M = A.size(0); | ||
int K = A.size(1) * 2; | ||
int N = B.size(1); | ||
torch::Tensor C = torch::empty({M, N}, A.options().dtype(torch::kInt32)); | ||
|
||
// some configs for int4 mma | ||
// https://github.com/NVIDIA/cutlass/blob/v3.5.1/test/unit/gemm/device/gemm_s4t_s4n_s32t_tensor_op_s32_sm80.cu | ||
// using default config. this can be tuned. | ||
using ThreadblockShape = cutlass::gemm::GemmShape<128, 256, 128>; | ||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; | ||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; | ||
// static int const kStages = 3; | ||
using ElementC = int32_t; | ||
using Gemm = cutlass::gemm::device::Gemm< | ||
ElementA, cutlass::layout::RowMajor, // A matrix | ||
ElementB, cutlass::layout::ColumnMajor, // B matrix | ||
ElementC, cutlass::layout::RowMajor, // C matrix | ||
ElementAccumulator, OpClass, ArchTag, | ||
ThreadblockShape, WarpShape, InstructionShape | ||
>; | ||
Gemm::Arguments args { | ||
{M, N, K}, | ||
{reinterpret_cast<ElementA *>(A.data_ptr<int8_t>()), K}, | ||
{reinterpret_cast<ElementB *>(B.data_ptr<int8_t>()), K}, | ||
{C.data_ptr<ElementC>(), N}, | ||
{C.data_ptr<ElementC>(), N}, | ||
{1, 0} // epilogue | ||
}; | ||
Gemm gemm_op; | ||
CUTLASS_STATUS_CHECK(gemm_op(args)); | ||
return C; | ||
#else | ||
TORCH_CHECK_NOT_IMPLEMENTED(false, __func__); | ||
return at::Tensor{}; | ||
#endif | ||
} | ||
|
||
template< | ||
typename ElementC, | ||
typename ThreadblockShape, | ||
typename WarpShape, | ||
typename InstructionShape, | ||
int numStages> | ||
void scaled_int4_mm_cutlass_dispatch(torch::Tensor A, torch::Tensor B, torch::Tensor row_scale, torch::Tensor col_scale, torch::Tensor C) { | ||
// problem shape | ||
int M = A.size(0); | ||
int K = A.size(1) * 2; | ||
int N = B.size(1); | ||
|
||
constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value; // 8 for BF16/FP16 | ||
using ElementEpilogue = float; | ||
constexpr int numEpilogueStages = 1; | ||
|
||
// build epilogue visitor tree | ||
using OutputTileThreadMap = cutlass::epilogue::threadblock::OutputTileThreadLayout< | ||
ThreadblockShape, WarpShape, ElementC, AlignmentC, numEpilogueStages | ||
>; | ||
|
||
using Accum = cutlass::epilogue::threadblock::VisitorAccFetch; | ||
constexpr auto RoundMode = cutlass::FloatRoundStyle::round_to_nearest; | ||
using Multiply = cutlass::epilogue::threadblock::VisitorCompute< | ||
cutlass::multiplies, ElementEpilogue, ElementEpilogue, RoundMode | ||
>; | ||
|
||
// (1, N) | ||
using ColScale = cutlass::epilogue::threadblock::VisitorRowBroadcast< | ||
OutputTileThreadMap, ElementC, | ||
cute::Stride<cute::_0, cute::_1, int32_t> // MNL | ||
>; | ||
using EVTCompute0 = cutlass::epilogue::threadblock::Sm80EVT<Multiply, Accum, ColScale>; | ||
|
||
// (M, 1) | ||
using RowScale = cutlass::epilogue::threadblock::VisitorColBroadcast< | ||
OutputTileThreadMap, ElementC, | ||
cute::Stride<cute::_1, cute::_0, int32_t> // MNL | ||
>; | ||
using EVTCompute1 = cutlass::epilogue::threadblock::Sm80EVT<Multiply, EVTCompute0, RowScale>; | ||
|
||
using Output = cutlass::epilogue::threadblock::VisitorAuxStore< | ||
OutputTileThreadMap, ElementC, RoundMode, | ||
cute::Stride<int64_t, cute::_1, int64_t> // MNL | ||
>; | ||
using EVTOutput = cutlass::epilogue::threadblock::Sm80EVT<Output, EVTCompute1>; | ||
|
||
using EVTKernel = typename cutlass::gemm::kernel::DefaultGemmWithVisitor< | ||
ElementA, cutlass::layout::RowMajor, cutlass::ComplexTransform::kNone, AlignmentA, | ||
ElementB, cutlass::layout::ColumnMajor, cutlass::ComplexTransform::kNone, AlignmentB, | ||
ElementC, cutlass::layout::RowMajor, AlignmentC, | ||
ElementAccumulator, ElementEpilogue, OpClass, ArchTag, | ||
ThreadblockShape, WarpShape, InstructionShape, | ||
EVTOutput, | ||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>, | ||
numStages, | ||
cutlass::arch::OpMultiplyAddSaturate, // OpMultiplyAdd does not work | ||
numEpilogueStages | ||
>::GemmKernel; | ||
using DeviceGemm = cutlass::gemm::device::GemmUniversalAdapter<EVTKernel>; | ||
|
||
// col_scale, row_scale, and C must have the same dtype | ||
const ElementA *A_ptr = reinterpret_cast<ElementA *>(A.data_ptr<int8_t>()); | ||
const ElementB *B_ptr = reinterpret_cast<ElementB *>(B.data_ptr<int8_t>()); | ||
const ElementC *col_scale_ptr = reinterpret_cast<ElementC *>(col_scale.data_ptr()); | ||
const ElementC *row_scale_ptr = reinterpret_cast<ElementC *>(row_scale.data_ptr()); | ||
ElementC *C_ptr = reinterpret_cast<ElementC *>(C.data_ptr()); | ||
|
||
typename EVTOutput::Arguments callback_args{ | ||
{ | ||
{ | ||
{}, // Accum | ||
{col_scale_ptr, ElementC(0), {cute::_0{}, cute::_1{}, int32_t(N)}}, // ColScale | ||
{} // Multiply | ||
}, // EVTCompute0 | ||
{row_scale_ptr, ElementC(0), {cute::_1{}, cute::_0{}, int32_t(M)}}, // RowScale | ||
{} // Multiply | ||
}, // EVTCompute1 | ||
{C_ptr, {int64_t{N}, cute::_1{}, int64_t{M*N}}} // EVTOutput | ||
}; | ||
|
||
typename DeviceGemm::Arguments args( | ||
cutlass::gemm::GemmUniversalMode::kGemm, | ||
cutlass::gemm::GemmCoord{M, N, K}, | ||
1, // batch_split | ||
callback_args, | ||
A_ptr, B_ptr, nullptr, nullptr, // unsued C_ptr and D_ptr | ||
M * K, N * K, 0, 0, // batch_stride A, B, C, D | ||
K, K, 0, 0 // stride A, B, C, D | ||
); | ||
|
||
DeviceGemm gemm_op; | ||
auto stream = at::cuda::getCurrentCUDAStream(); | ||
CUTLASS_STATUS_CHECK(gemm_op.can_implement(args)); | ||
CUTLASS_STATUS_CHECK(gemm_op(args, nullptr, stream)); | ||
} | ||
|
||
// we will do input checks in python. A and B are stored as int8 | ||
// this function is based on the following cutlass example | ||
// https://github.com/NVIDIA/cutlass/blob/main/examples/47_ampere_gemm_universal_streamk/ampere_gemm_universal_streamk_broadcast.cu | ||
// also with the help of emitted code from cutlass Python | ||
torch::Tensor scaled_int4_mm_cutlass(torch::Tensor A, torch::Tensor B, torch::Tensor row_scale, torch::Tensor col_scale) { | ||
#if defined(BUILD_INT4_MM_CUTLASS) | ||
int M = A.size(0); | ||
int N = B.size(1); | ||
torch::Tensor C = torch::empty({M, N}, row_scale.options()); | ||
|
||
// some configs for int4 mma | ||
// https://github.com/NVIDIA/cutlass/blob/v3.5.1/test/unit/gemm/device/gemm_s4t_s4n_s32t_tensor_op_s32_sm80.cu | ||
// using default config. this can be tuned. | ||
using ThreadblockShape = cutlass::gemm::GemmShape<128, 256, 128>; | ||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; | ||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; | ||
constexpr int numStages = 3; | ||
|
||
AT_DISPATCH_SWITCH( | ||
drisspg marked this conversation as resolved.
Show resolved
Hide resolved
|
||
row_scale.scalar_type(), | ||
"scaled_int4_mm_cutlass", | ||
AT_DISPATCH_CASE( | ||
torch::ScalarType::Half, | ||
[&]() { | ||
using ElementC = cutlass::half_t; | ||
scaled_int4_mm_cutlass_dispatch< | ||
ElementC, ThreadblockShape, WarpShape, InstructionShape, numStages>( | ||
A, B, row_scale, col_scale, C); | ||
} | ||
) | ||
AT_DISPATCH_CASE( | ||
torch::ScalarType::BFloat16, | ||
[&]() { | ||
using ElementC = cutlass::bfloat16_t; | ||
scaled_int4_mm_cutlass_dispatch< | ||
ElementC, ThreadblockShape, WarpShape, InstructionShape, numStages>( | ||
A, B, row_scale, col_scale, C); | ||
} | ||
) | ||
); | ||
|
||
return C; | ||
#else | ||
TORCH_CHECK_NOT_IMPLEMENTED(false, __func__); | ||
return at::Tensor{}; | ||
#endif | ||
} | ||
|
||
TORCH_LIBRARY_IMPL(torchao, CUDA, m) { | ||
m.impl("torchao::int4_mm_cutlass", &int4_mm_cutlass); | ||
m.impl("torchao::scaled_int4_mm_cutlass", &scaled_int4_mm_cutlass); | ||
} | ||
|
||
} // namespace torchao |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -22,6 +22,10 @@ | |
lib.define( | ||
"s8s4_linear_cutlass(Tensor input, Tensor input_scale, Tensor weight, Tensor weight_scale, Tensor bias) -> Tensor" | ||
) | ||
lib.define("int4_mm_cutlass(Tensor A, Tensor B) -> Tensor") | ||
lib.define( | ||
"scaled_int4_mm_cutlass(Tensor A, Tensor B, Tensor row_scale, Tensor col_scale) -> Tensor" | ||
) | ||
|
||
|
||
def register_custom_op(name): | ||
|
@@ -615,3 +619,52 @@ def _( | |
dtype=input_scale.dtype, | ||
device=input.device, | ||
) | ||
|
||
|
||
def int4_mm_cutlass(A: Tensor, B: Tensor) -> Tensor: | ||
""" | ||
CUTLASS-based W4A4 matmul. | ||
Args: | ||
A: first INT4 tensor, packed in INT8 dtype, row-major layout. | ||
B: second INT4 tensor, packed in INT8 dtype, column-major layout. | ||
Returns: | ||
output: result tensor, in row-major layout. | ||
""" | ||
assert A.dtype == B.dtype == torch.int8 | ||
assert A.ndim == B.ndim == 2 | ||
assert A.shape[1] == B.shape[0] | ||
assert A.is_contiguous() and B.T.is_contiguous() | ||
return torch.ops.torchao.int4_mm_cutlass.default(A, B) | ||
|
||
|
||
@register_custom_op("torchao::int4_mm_cutlass") | ||
def _(A: Tensor, B: Tensor) -> Tensor: | ||
return A.new_empty(A.shape[0], B.shape[1], dtype=torch.int32) | ||
|
||
|
||
def scaled_int4_mm_cutlass( | ||
A: Tensor, B: Tensor, row_scale: Tensor, col_scale: Tensor | ||
) -> Tensor: | ||
""" | ||
CUTLASS-based W4A4 scaled-matmul. | ||
Args: | ||
A: first INT4 tensor, packed in INT8 dtype, row-major layout. | ||
B: second INT4 tensor, packed in INT8 dtype, column-major layout. | ||
row_scale: scaling for each output row. | ||
col_scale: scaling for each output column. | ||
Returns: | ||
output: result tensor, in row-major layout. | ||
""" | ||
assert A.dtype == B.dtype == torch.int8 | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Should add the alignment constraints as well right? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. How should I check for data alignment from Python? I guess in C++, I can check by testing divisibility of the memory address? (or perhaps there is a util function somewhere that I'm not aware of...) There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Hmm I think there is a restriction that k need to be a multiple of 32 right? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Or at least 16 packed int4 s |
||
assert A.ndim == B.ndim == 2 | ||
assert A.shape[1] == B.shape[0] | ||
assert A.is_contiguous() and B.T.is_contiguous() | ||
assert row_scale.ndim == col_scale.ndim == 1 | ||
assert row_scale.dtype == col_scale.dtype | ||
assert row_scale.dtype in (torch.float16, torch.bfloat16) | ||
return torch.ops.torchao.scaled_int4_mm_cutlass.default(A, B, row_scale, col_scale) | ||
|
||
|
||
@register_custom_op("torchao::scaled_int4_mm_cutlass") | ||
def _(A: Tensor, B: Tensor, row_scale: Tensor, col_scale: Tensor) -> Tensor: | ||
return row_scale.new_empty(A.shape[0], B.shape[1]) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do you know if the universal gemm api can be used?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Will look into it. I wrote this quite some time ago...