-
Notifications
You must be signed in to change notification settings - Fork 198
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add CUTLASS-based W4A4 #1515
Draft
gau-nernst
wants to merge
6
commits into
pytorch:main
Choose a base branch
from
gau-nernst:w4a4
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+448
−0
Draft
Add CUTLASS-based W4A4 #1515
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,231 @@ | ||
#include <torch/extension.h> | ||
#include <ATen/cuda/CUDAContext.h> | ||
|
||
// copied from s8s4_linear_cutlass.cu | ||
#if defined(TORCHAO_USE_CUTLASS) && !defined(_WIN32) && \ | ||
defined(CUDA_VERSION) && (CUDA_VERSION >= 11080) | ||
#define BUILD_INT4_MM_CUTLASS | ||
#endif | ||
|
||
#if defined(BUILD_INT4_MM_CUTLASS) | ||
#include "cutlass/cutlass.h" | ||
#include "cutlass/gemm/device/gemm_universal.h" | ||
#include "cutlass/gemm/device/gemm.h" | ||
#include "cutlass/epilogue/threadblock/fusion/visitors.hpp" | ||
#include "cutlass/gemm/kernel/default_gemm_universal_with_visitor.h" | ||
#include "cutlass/gemm/device/gemm_universal_adapter.h" | ||
|
||
#define CUTLASS_STATUS_CHECK(status) \ | ||
{ \ | ||
TORCH_CHECK(status == cutlass::Status::kSuccess, \ | ||
__func__, " : Got CUTLASS error: ", \ | ||
cutlassGetStatusString(status)); \ | ||
} | ||
#endif | ||
|
||
namespace torchao { | ||
|
||
#if defined(BUILD_INT4_MM_CUTLASS) | ||
// define common params | ||
using ElementA = cutlass::int4b_t; | ||
using ElementB = cutlass::int4b_t; | ||
using ElementAccumulator = int32_t; | ||
using OpClass = cutlass::arch::OpClassTensorOp; | ||
using ArchTag = cutlass::arch::Sm80; | ||
|
||
// how many elements to load at a time -> load 128-bit = 32 x 4-bit | ||
constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value; | ||
constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value; | ||
#endif | ||
|
||
// we will do input checks in python. A and B are stored as int8 | ||
torch::Tensor int4_mm_cutlass(torch::Tensor A, torch::Tensor B) { | ||
#if defined(BUILD_INT4_MM_CUTLASS) | ||
int M = A.size(0); | ||
int K = A.size(1) * 2; | ||
int N = B.size(1); | ||
torch::Tensor C = torch::empty({M, N}, A.options().dtype(torch::kInt32)); | ||
|
||
// some configs for int4 mma | ||
// https://github.com/NVIDIA/cutlass/blob/v3.5.1/test/unit/gemm/device/gemm_s4t_s4n_s32t_tensor_op_s32_sm80.cu | ||
// using default config. this can be tuned. | ||
using ThreadblockShape = cutlass::gemm::GemmShape<128, 256, 128>; | ||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; | ||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; | ||
// static int const kStages = 3; | ||
using ElementC = int32_t; | ||
using Gemm = cutlass::gemm::device::Gemm< | ||
ElementA, cutlass::layout::RowMajor, // A matrix | ||
ElementB, cutlass::layout::ColumnMajor, // B matrix | ||
ElementC, cutlass::layout::RowMajor, // C matrix | ||
ElementAccumulator, OpClass, ArchTag, | ||
ThreadblockShape, WarpShape, InstructionShape | ||
>; | ||
Gemm::Arguments args { | ||
{M, N, K}, | ||
{reinterpret_cast<ElementA *>(A.data_ptr<int8_t>()), K}, | ||
{reinterpret_cast<ElementB *>(B.data_ptr<int8_t>()), K}, | ||
{C.data_ptr<ElementC>(), N}, | ||
{C.data_ptr<ElementC>(), N}, | ||
{1, 0} // epilogue | ||
}; | ||
Gemm gemm_op; | ||
CUTLASS_STATUS_CHECK(gemm_op(args)); | ||
return C; | ||
#else | ||
TORCH_CHECK_NOT_IMPLEMENTED(false, __func__); | ||
return at::Tensor{}; | ||
#endif | ||
} | ||
|
||
template< | ||
typename ElementC, | ||
typename ThreadblockShape, | ||
typename WarpShape, | ||
typename InstructionShape, | ||
int numStages> | ||
void scaled_int4_mm_cutlass_dispatch(torch::Tensor A, torch::Tensor B, torch::Tensor row_scale, torch::Tensor col_scale, torch::Tensor C) { | ||
// problem shape | ||
int M = A.size(0); | ||
int K = A.size(1) * 2; | ||
int N = B.size(1); | ||
|
||
constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value; // 8 for BF16/FP16 | ||
using ElementEpilogue = float; | ||
constexpr int numEpilogueStages = 1; | ||
|
||
// build epilogue visitor tree | ||
using OutputTileThreadMap = cutlass::epilogue::threadblock::OutputTileThreadLayout< | ||
ThreadblockShape, WarpShape, ElementC, AlignmentC, numEpilogueStages | ||
>; | ||
|
||
using Accum = cutlass::epilogue::threadblock::VisitorAccFetch; | ||
constexpr auto RoundMode = cutlass::FloatRoundStyle::round_to_nearest; | ||
using Multiply = cutlass::epilogue::threadblock::VisitorCompute< | ||
cutlass::multiplies, ElementEpilogue, ElementEpilogue, RoundMode | ||
>; | ||
|
||
// (1, N) | ||
using ColScale = cutlass::epilogue::threadblock::VisitorRowBroadcast< | ||
OutputTileThreadMap, ElementC, | ||
cute::Stride<cute::_0, cute::_1, int32_t> // MNL | ||
>; | ||
using EVTCompute0 = cutlass::epilogue::threadblock::Sm80EVT<Multiply, Accum, ColScale>; | ||
|
||
// (M, 1) | ||
using RowScale = cutlass::epilogue::threadblock::VisitorColBroadcast< | ||
OutputTileThreadMap, ElementC, | ||
cute::Stride<cute::_1, cute::_0, int32_t> // MNL | ||
>; | ||
using EVTCompute1 = cutlass::epilogue::threadblock::Sm80EVT<Multiply, EVTCompute0, RowScale>; | ||
|
||
using Output = cutlass::epilogue::threadblock::VisitorAuxStore< | ||
OutputTileThreadMap, ElementC, RoundMode, | ||
cute::Stride<int64_t, cute::_1, int64_t> // MNL | ||
>; | ||
using EVTOutput = cutlass::epilogue::threadblock::Sm80EVT<Output, EVTCompute1>; | ||
|
||
using EVTKernel = typename cutlass::gemm::kernel::DefaultGemmWithVisitor< | ||
ElementA, cutlass::layout::RowMajor, cutlass::ComplexTransform::kNone, AlignmentA, | ||
ElementB, cutlass::layout::ColumnMajor, cutlass::ComplexTransform::kNone, AlignmentB, | ||
ElementC, cutlass::layout::RowMajor, AlignmentC, | ||
ElementAccumulator, ElementEpilogue, OpClass, ArchTag, | ||
ThreadblockShape, WarpShape, InstructionShape, | ||
EVTOutput, | ||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>, | ||
numStages, | ||
cutlass::arch::OpMultiplyAddSaturate, // OpMultiplyAdd does not work | ||
numEpilogueStages | ||
>::GemmKernel; | ||
using DeviceGemm = cutlass::gemm::device::GemmUniversalAdapter<EVTKernel>; | ||
|
||
// col_scale, row_scale, and C must have the same dtype | ||
const ElementA *A_ptr = reinterpret_cast<ElementA *>(A.data_ptr<int8_t>()); | ||
const ElementB *B_ptr = reinterpret_cast<ElementB *>(B.data_ptr<int8_t>()); | ||
const ElementC *col_scale_ptr = reinterpret_cast<ElementC *>(col_scale.data_ptr()); | ||
const ElementC *row_scale_ptr = reinterpret_cast<ElementC *>(row_scale.data_ptr()); | ||
ElementC *C_ptr = reinterpret_cast<ElementC *>(C.data_ptr()); | ||
|
||
typename EVTOutput::Arguments callback_args{ | ||
{ | ||
{ | ||
{}, // Accum | ||
{col_scale_ptr, ElementC(0), {cute::_0{}, cute::_1{}, int32_t(N)}}, // ColScale | ||
{} // Multiply | ||
}, // EVTCompute0 | ||
{row_scale_ptr, ElementC(0), {cute::_1{}, cute::_0{}, int32_t(M)}}, // RowScale | ||
{} // Multiply | ||
}, // EVTCompute1 | ||
{C_ptr, {int64_t{N}, cute::_1{}, int64_t{M*N}}} // EVTOutput | ||
}; | ||
|
||
typename DeviceGemm::Arguments args( | ||
cutlass::gemm::GemmUniversalMode::kGemm, | ||
cutlass::gemm::GemmCoord{M, N, K}, | ||
1, // batch_split | ||
callback_args, | ||
A_ptr, B_ptr, nullptr, nullptr, // unsued C_ptr and D_ptr | ||
M * K, N * K, 0, 0, // batch_stride A, B, C, D | ||
K, K, 0, 0 // stride A, B, C, D | ||
); | ||
|
||
DeviceGemm gemm_op; | ||
auto stream = at::cuda::getCurrentCUDAStream(); | ||
CUTLASS_STATUS_CHECK(gemm_op.can_implement(args)); | ||
CUTLASS_STATUS_CHECK(gemm_op(args, nullptr, stream)); | ||
} | ||
|
||
// we will do input checks in python. A and B are stored as int8 | ||
// this function is based on the following cutlass example | ||
// https://github.com/NVIDIA/cutlass/blob/main/examples/47_ampere_gemm_universal_streamk/ampere_gemm_universal_streamk_broadcast.cu | ||
// also with the help of emitted code from cutlass Python | ||
torch::Tensor scaled_int4_mm_cutlass(torch::Tensor A, torch::Tensor B, torch::Tensor row_scale, torch::Tensor col_scale) { | ||
#if defined(BUILD_INT4_MM_CUTLASS) | ||
int M = A.size(0); | ||
int N = B.size(1); | ||
torch::Tensor C = torch::empty({M, N}, row_scale.options()); | ||
|
||
// some configs for int4 mma | ||
// https://github.com/NVIDIA/cutlass/blob/v3.5.1/test/unit/gemm/device/gemm_s4t_s4n_s32t_tensor_op_s32_sm80.cu | ||
// using default config. this can be tuned. | ||
using ThreadblockShape = cutlass::gemm::GemmShape<128, 256, 128>; | ||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; | ||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; | ||
constexpr int numStages = 3; | ||
|
||
AT_DISPATCH_SWITCH( | ||
drisspg marked this conversation as resolved.
Show resolved
Hide resolved
|
||
row_scale.scalar_type(), | ||
"scaled_int4_mm_cutlass", | ||
AT_DISPATCH_CASE( | ||
torch::ScalarType::Half, | ||
[&]() { | ||
using ElementC = cutlass::half_t; | ||
scaled_int4_mm_cutlass_dispatch< | ||
ElementC, ThreadblockShape, WarpShape, InstructionShape, numStages>( | ||
A, B, row_scale, col_scale, C); | ||
} | ||
) | ||
AT_DISPATCH_CASE( | ||
torch::ScalarType::BFloat16, | ||
[&]() { | ||
using ElementC = cutlass::bfloat16_t; | ||
scaled_int4_mm_cutlass_dispatch< | ||
ElementC, ThreadblockShape, WarpShape, InstructionShape, numStages>( | ||
A, B, row_scale, col_scale, C); | ||
} | ||
) | ||
); | ||
|
||
return C; | ||
#else | ||
TORCH_CHECK_NOT_IMPLEMENTED(false, __func__); | ||
return at::Tensor{}; | ||
#endif | ||
} | ||
|
||
TORCH_LIBRARY_IMPL(torchao, CUDA, m) { | ||
m.impl("torchao::int4_mm_cutlass", &int4_mm_cutlass); | ||
m.impl("torchao::scaled_int4_mm_cutlass", &scaled_int4_mm_cutlass); | ||
} | ||
|
||
} // namespace torchao |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do you know if the universal gemm api can be used?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Will look into it. I wrote this quite some time ago...