-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #813 from qiboteam/single_qubit_tomography
Single qubit state tomography
- Loading branch information
Showing
4 changed files
with
389 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,309 @@ | ||
import json | ||
from copy import deepcopy | ||
from dataclasses import dataclass, field | ||
from pathlib import Path | ||
from typing import Optional, Union | ||
|
||
import numpy as np | ||
import plotly.graph_objects as go | ||
from plotly.subplots import make_subplots | ||
from qibo import Circuit, gates | ||
from qibo.backends import GlobalBackend, NumpyBackend, matrices | ||
from qibo.quantum_info import fidelity | ||
from qibolab.platform import Platform | ||
from qibolab.qubits import QubitId | ||
|
||
from qibocal.auto.operation import DATAFILE, Data, Parameters, Results, Routine | ||
from qibocal.auto.transpile import dummy_transpiler, execute_transpiled_circuit | ||
|
||
from .utils import table_dict, table_html | ||
|
||
BASIS = ["X", "Y", "Z"] | ||
"""Single qubit measurement basis.""" | ||
SIMULATED_DENSITY_MATRIX = "ideal" | ||
"""Filename for simulated density matrix.""" | ||
|
||
|
||
@dataclass | ||
class StateTomographyParameters(Parameters): | ||
"""Tomography input parameters""" | ||
|
||
circuit: Optional[Union[str, Circuit]] = None | ||
"""Circuit to prepare initial state. | ||
It can also be provided the path to a json file containing | ||
a serialized circuit. | ||
""" | ||
|
||
def __post_init__(self): | ||
if isinstance(self.circuit, str): | ||
raw = json.loads((Path.cwd() / self.circuit).read_text()) | ||
self.circuit = Circuit.from_dict(raw) | ||
|
||
|
||
TomographyType = np.dtype( | ||
[ | ||
("samples", np.int64), | ||
] | ||
) | ||
"""Custom dtype for tomography.""" | ||
|
||
|
||
@dataclass | ||
class StateTomographyData(Data): | ||
"""Tomography data""" | ||
|
||
ideal: dict[tuple[QubitId, str], np.float64] = field(default_factory=dict) | ||
"""Ideal samples measurements.""" | ||
data: dict[tuple[QubitId, str], np.int64] = field(default_factory=dict) | ||
"""Hardware measurements.""" | ||
|
||
def save(self, path): | ||
self._to_npz(path, DATAFILE) | ||
np.savez( | ||
path / f"{SIMULATED_DENSITY_MATRIX}.npz", | ||
**{json.dumps(i): self.ideal[i] for i in self.ideal}, | ||
) | ||
|
||
@classmethod | ||
def load(cls, path): | ||
instance = cls() | ||
instance.data = super().load_data(path, DATAFILE) | ||
instance.ideal = super().load_data(path, SIMULATED_DENSITY_MATRIX) | ||
|
||
return instance | ||
|
||
|
||
@dataclass | ||
class StateTomographyResults(Results): | ||
"""Tomography results""" | ||
|
||
measured_density_matrix_real: dict[QubitId, list] | ||
"""Real part of measured density matrix.""" | ||
measured_density_matrix_imag: dict[QubitId, list] | ||
"""Imaginary part of measured density matrix.""" | ||
target_density_matrix_real: dict[QubitId, list] | ||
"""Real part of exact density matrix.""" | ||
target_density_matrix_imag: dict[QubitId, list] | ||
"""Imaginary part of exact density matrix.""" | ||
fidelity: dict[QubitId, float] | ||
"""State fidelity.""" | ||
|
||
|
||
def _acquisition( | ||
params: StateTomographyParameters, platform: Platform, targets: list[QubitId] | ||
) -> StateTomographyData: | ||
"""Acquisition protocol for single qubit state tomography experiment.""" | ||
|
||
if params.circuit is None: | ||
params.circuit = Circuit(len(targets)) | ||
|
||
backend = GlobalBackend() | ||
transpiler = dummy_transpiler(backend) | ||
|
||
data = StateTomographyData() | ||
|
||
for basis in BASIS: | ||
basis_circuit = deepcopy(params.circuit) | ||
# FIXME: https://github.com/qiboteam/qibo/issues/1318 | ||
if basis != "Z": | ||
for i in range(len(targets)): | ||
basis_circuit.add(getattr(gates, basis)(i).basis_rotation()) | ||
|
||
basis_circuit.add(gates.M(i) for i in range(len(targets))) | ||
_, results = execute_transpiled_circuit( | ||
basis_circuit, | ||
targets, | ||
backend, | ||
nshots=params.nshots, | ||
transpiler=transpiler, | ||
) | ||
for i, target in enumerate(targets): | ||
data.register_qubit( | ||
TomographyType, | ||
(target, basis), | ||
dict( | ||
samples=np.array(results.samples()).T[i], | ||
), | ||
) | ||
data.ideal[target, basis] = np.array( | ||
NumpyBackend().execute_circuit(basis_circuit, nshots=10000).samples() | ||
).T[i] | ||
return data | ||
|
||
|
||
def _fit(data: StateTomographyData) -> StateTomographyResults: | ||
"""Post-processing for State tomography.""" | ||
measured_density_matrix_real = {} | ||
measured_density_matrix_imag = {} | ||
target_density_matrix_real = {} | ||
target_density_matrix_imag = {} | ||
fid = {} | ||
for qubit in data.qubits: | ||
x_exp, y_exp, z_exp = ( | ||
1 - 2 * np.mean(data[qubit, basis].samples) for basis in BASIS | ||
) | ||
density_matrix = 0.5 * ( | ||
matrices.I + matrices.X * x_exp + matrices.Y * y_exp + matrices.Z * z_exp | ||
) | ||
measured_density_matrix_real[qubit] = np.real(density_matrix).tolist() | ||
measured_density_matrix_imag[qubit] = np.imag(density_matrix).tolist() | ||
|
||
x_theory, y_theory, z_theory = ( | ||
1 - 2 * np.mean(data.ideal[qubit, basis]) for basis in BASIS | ||
) | ||
target_density_matrix = 0.5 * ( | ||
matrices.I | ||
+ matrices.X * x_theory | ||
+ matrices.Y * y_theory | ||
+ matrices.Z * z_theory | ||
) | ||
target_density_matrix_real[qubit] = np.real(target_density_matrix).tolist() | ||
target_density_matrix_imag[qubit] = np.imag(target_density_matrix).tolist() | ||
fid[qubit] = fidelity( | ||
np.array(measured_density_matrix_real[qubit]) | ||
+ 1.0j * np.array(measured_density_matrix_imag[qubit]), | ||
target_density_matrix, | ||
) | ||
|
||
return StateTomographyResults( | ||
measured_density_matrix_real=measured_density_matrix_real, | ||
measured_density_matrix_imag=measured_density_matrix_imag, | ||
target_density_matrix_real=target_density_matrix_real, | ||
target_density_matrix_imag=target_density_matrix_imag, | ||
fidelity=fid, | ||
) | ||
|
||
|
||
def plot_parallelogram(a, e, pos_x, pos_y, **options): | ||
"""Plotting single histogram in 3d plot.""" | ||
x, y, z = np.meshgrid( | ||
np.linspace(pos_x - a / 4, pos_x + a / 4, 2), | ||
np.linspace(pos_y - a / 4, pos_y + a / 4, 2), | ||
np.linspace(0, e, 2), | ||
) | ||
x = x.flatten() | ||
y = y.flatten() | ||
z = z.flatten() | ||
return go.Mesh3d( | ||
x=x, | ||
y=y, | ||
z=z, | ||
alphahull=1, | ||
flatshading=True, | ||
lighting={"diffuse": 0.1, "specular": 2.0, "roughness": 0.5}, | ||
**options, | ||
) | ||
|
||
|
||
def plot_rho(fig, zz, trace_options, figure_options, showlegend=None): | ||
"""Plot density matrix""" | ||
x, y = np.meshgrid( | ||
[0, 1], | ||
[0, 1], | ||
) | ||
xx = x.flatten() | ||
yy = y.flatten() | ||
zz = np.array(zz).ravel() | ||
showlegend_temp = False | ||
for x, y, z in zip(xx, yy, zz): | ||
if showlegend is None: | ||
showlegend_temp = bool(x == xx[-1] and y == yy[-1]) | ||
fig.add_trace( | ||
plot_parallelogram(1, z, x, y, showlegend=showlegend_temp, **trace_options), | ||
**figure_options, | ||
) | ||
|
||
|
||
def _plot(data: StateTomographyData, fit: StateTomographyResults, target: QubitId): | ||
"""Plotting for state tomography""" | ||
fig = make_subplots( | ||
rows=1, | ||
cols=2, | ||
start_cell="top-left", | ||
specs=[[{"type": "scatter3d"}, {"type": "scatter3d"}]], | ||
subplot_titles=( | ||
"Re(ρ)", | ||
"Im(ρ)", | ||
), | ||
) | ||
|
||
if fit is not None: | ||
# computing limits for colorscale | ||
min_re, max_re = np.min(fit.target_density_matrix_real[target]), np.max( | ||
fit.target_density_matrix_real[target] | ||
) | ||
min_im, max_im = np.min(fit.target_density_matrix_imag[target]), np.max( | ||
fit.target_density_matrix_imag[target] | ||
) | ||
|
||
# add offset | ||
if np.abs(min_re - max_re) < 1e-5: | ||
min_re = min_re - 0.1 | ||
max_re = max_re + 0.1 | ||
|
||
if np.abs(min_im - max_im) < 1e-5: | ||
min_im = min_im - 0.1 | ||
max_im = max_im + 0.1 | ||
|
||
plot_rho( | ||
fig, | ||
fit.measured_density_matrix_real[target], | ||
trace_options=dict( | ||
color="rgba(255,100,0,0.1)", name="experiment", legendgroup="experiment" | ||
), | ||
figure_options=dict(row=1, col=1), | ||
) | ||
|
||
plot_rho( | ||
fig, | ||
fit.target_density_matrix_real[target], | ||
trace_options=dict( | ||
color="rgba(100,0,100,0.1)", name="simulation", legendgroup="simulation" | ||
), | ||
figure_options=dict(row=1, col=1), | ||
) | ||
|
||
plot_rho( | ||
fig, | ||
fit.measured_density_matrix_imag[target], | ||
trace_options=dict( | ||
color="rgba(255,100,0,0.1)", name="experiment", legendgroup="experiment" | ||
), | ||
figure_options=dict(row=1, col=2), | ||
showlegend=False, | ||
) | ||
|
||
plot_rho( | ||
fig, | ||
fit.target_density_matrix_imag[target], | ||
trace_options=dict( | ||
color="rgba(100,0,100,0.1)", name="simulation", legendgroup="simulation" | ||
), | ||
figure_options=dict(row=1, col=2), | ||
showlegend=False, | ||
) | ||
|
||
fig.update_scenes( | ||
xaxis=dict(tickvals=[0, 1]), | ||
yaxis=dict(tickvals=[0, 1]), | ||
zaxis=dict(range=[-1, 1]), | ||
) | ||
|
||
fitting_report = table_html( | ||
table_dict( | ||
target, | ||
[ | ||
"Fidelity", | ||
], | ||
[ | ||
np.round(fit.fidelity[target], 4), | ||
], | ||
) | ||
) | ||
|
||
return [fig], fitting_report | ||
return [], "" | ||
|
||
|
||
state_tomography = Routine(_acquisition, _fit, _plot) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
{ | ||
"queue": [ | ||
{ | ||
"name": "x", | ||
"init_args": [ | ||
0 | ||
], | ||
"init_kwargs": {}, | ||
"_target_qubits": [ | ||
0 | ||
], | ||
"_control_qubits": [], | ||
"_class": "X" | ||
}, | ||
{ | ||
"name": "x", | ||
"init_args": [ | ||
1 | ||
], | ||
"init_kwargs": {}, | ||
"_target_qubits": [ | ||
1 | ||
], | ||
"_control_qubits": [], | ||
"_class": "X" | ||
}, | ||
{ | ||
"name": "x", | ||
"init_args": [ | ||
2 | ||
], | ||
"init_kwargs": {}, | ||
"_target_qubits": [ | ||
2 | ||
], | ||
"_control_qubits": [], | ||
"_class": "X" | ||
}, | ||
{ | ||
"name": "x", | ||
"init_args": [ | ||
3 | ||
], | ||
"init_kwargs": {}, | ||
"_target_qubits": [ | ||
3 | ||
], | ||
"_control_qubits": [], | ||
"_class": "X" | ||
}, | ||
{ | ||
"name": "x", | ||
"init_args": [ | ||
4 | ||
], | ||
"init_kwargs": {}, | ||
"_target_qubits": [ | ||
4 | ||
], | ||
"_control_qubits": [], | ||
"_class": "X" | ||
} | ||
], | ||
"nqubits": 5, | ||
"density_matrix": false, | ||
"qibo_version": "0.2.8" | ||
} |
Oops, something went wrong.