Skip to content

Commit

Permalink
Merge branch 'main' into expectation-from-samples
Browse files Browse the repository at this point in the history
  • Loading branch information
chmwzc committed Jan 25, 2024
2 parents a1e5ae3 + ad1277b commit 5c7c7e8
Show file tree
Hide file tree
Showing 7 changed files with 393 additions and 249 deletions.
1 change: 1 addition & 0 deletions doc/source/api-reference/ansatz.rst
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ Unitary Coupled Cluster

.. autofunction:: qibochem.ansatz.ucc.ucc_circuit

.. autofunction:: qibochem.ansatz.ucc.ucc_ansatz

Basis rotation
--------------
Expand Down
137 changes: 78 additions & 59 deletions poetry.lock

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion src/qibochem/ansatz/basis_rotation.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ def br_circuit(n_qubits, parameters, n_occ):
n_occ: Number of occupied orbitals
Returns:
Qibo ``Circuit`` corresponding to the basis rotation ansatz between the occupied and virtual orbitals
Qibo ``Circuit``: Circuit corresponding to the basis rotation ansatz between the occupied and virtual orbitals
"""
assert len(parameters) == (n_occ * (n_qubits - n_occ)), "Need len(parameters) == (n_occ * n_virt)"
# Unitary rotation matrix \exp(\kappa)
Expand Down
2 changes: 1 addition & 1 deletion src/qibochem/ansatz/hardware_efficient.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ def hea(n_layers, n_qubits, parameter_gates=["RY", "RZ"], coupling_gates="CZ"):
valid two-qubit ``Qibo`` gate. Default: ``"CZ"``
Returns:
List of gates corresponding to the hardware-efficient ansatz
``list``: Gates corresponding to the hardware-efficient ansatz
"""
gate_list = []

Expand Down
2 changes: 1 addition & 1 deletion src/qibochem/ansatz/hf_reference.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ def hf_circuit(n_qubits, n_electrons, ferm_qubit_map=None):
ferm_qubit_map: Fermion to qubit map. Must be either Jordan-Wigner (``jw``) or Brayvi-Kitaev (``bk``). Default value is ``jw``.
Returns:
Qibo ``Circuit`` initialized in a HF reference state
Qibo ``Circuit``: Circuit initialized in a HF reference state
"""
# Which fermion-to-qubit map to use
if ferm_qubit_map is None:
Expand Down
199 changes: 113 additions & 86 deletions src/qibochem/ansatz/ucc.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
import openfermion
from qibo import gates, models

from qibochem.ansatz.hf_reference import hf_circuit


def expi_pauli(n_qubits, theta, pauli_string):
"""
Expand Down Expand Up @@ -66,13 +68,13 @@ def ucc_circuit(n_qubits, excitation, theta=0.0, trotter_steps=1, ferm_qubit_map
excitation: Iterable of orbitals involved in the excitation; must have an even number of elements
E.g. ``[0, 1, 2, 3]`` represents the excitation of electrons in orbitals ``(0, 1)`` to ``(2, 3)``
theta: UCC parameter. Defaults to 0.0
trotter_steps: Number of Trotter steps; i.e. number of times the UCC ansatz is applied with \theta = \theta / trotter_steps
trotter_steps: Number of Trotter steps; i.e. number of times the UCC ansatz is applied with ``theta`` = ``theta / trotter_steps``. Default: 1
ferm_qubit_map: Fermion-to-qubit transformation. Default is Jordan-Wigner (``jw``).
coeffs: List to hold the coefficients for the rotation parameter in each Pauli string.
May be useful in running the VQE. WARNING: Will be modified in this function
Returns:
Qibo ``Circuit`` corresponding to a single UCC excitation
Qibo ``Circuit``: Circuit corresponding to a single UCC excitation
"""
# Check size of orbitals input
n_orbitals = len(excitation)
Expand Down Expand Up @@ -116,31 +118,37 @@ def ucc_circuit(n_qubits, excitation, theta=0.0, trotter_steps=1, ferm_qubit_map
# Utility functions


def mp2_amplitude(orbitals, orbital_energies, tei):
def mp2_amplitude(excitation, orbital_energies, tei):
"""
Calculate the MP2 guess amplitudes to be used in the UCC doubles ansatz
In SO basis: t_{ij}^{ab} = (g_{ijab} - g_{ijba}) / (e_i + e_j - e_a - e_b)
Calculate the MP2 guess amplitude for a single UCC circuit: 0.0 for a single excitation.
for a double excitation (In SO basis): t_{ij}^{ab} = (g_{ijab} - g_{ijba}) / (e_i + e_j - e_a - e_b)
Args:
orbitals: list of spin-orbitals representing a double excitation, must have exactly
4 elements
excitation: Iterable of spin-orbitals representing a excitation. Must have either 2 or 4 elements exactly,
representing a single or double excitation respectively.
orbital_energies: eigenvalues of the Fock operator, i.e. orbital energies
tei: Two-electron integrals in MO basis and second quantization notation
Returns:
MP2 guess amplitude (float)
"""
# Checks orbitals
assert len(orbitals) == 4, f"{orbitals} must have only 4 orbitals for a double excitation"
# Convert orbital indices to be in MO basis
mo_orbitals = [_orb // 2 for _orb in orbitals]
# Checks validity of excitation argument
assert len(excitation) % 2 == 0 and len(excitation) // 2 <= 2, f"{excitation} must have either 2 or 4 elements"
# If single excitation, can just return 0.0 directly
if len(excitation) == 2:
return 0.0

# Convert orbital indices to be in MO basis
mo_orbitals = [orbital // 2 for orbital in excitation]
# Numerator: g_ijab - g_ijba
g_ijab = (
tei[tuple(mo_orbitals)] # Can index directly using the MO TEIs
if (orbitals[0] + orbitals[3]) % 2 == 0 and (orbitals[1] + orbitals[2]) % 2 == 0
if (excitation[0] + excitation[3]) % 2 == 0 and (excitation[1] + excitation[2]) % 2 == 0
else 0.0
)
g_ijba = (
tei[tuple(mo_orbitals[:2] + mo_orbitals[2:][::-1])] # Reverse last two terms
if (orbitals[0] + orbitals[2]) % 2 == 0 and (orbitals[1] + orbitals[3]) % 2 == 0
if (excitation[0] + excitation[2]) % 2 == 0 and (excitation[1] + excitation[3]) % 2 == 0
else 0.0
)
numerator = g_ijab - g_ijba
Expand All @@ -166,9 +174,9 @@ def generate_excitations(order, excite_from, excite_to, conserve_spin=True):
if order > min(len(excite_from), len(excite_to)):
return [[]]

# Generate all possible excitations first
from itertools import combinations

# Generate all possible excitations first
all_excitations = [
[*_from, *_to] for _from in combinations(excite_from, order) for _to in combinations(excite_to, order)
]
Expand Down Expand Up @@ -228,7 +236,7 @@ def sort_excitations(excitations):
pair_excitations = sorted(pair_excitations)
ex_to_remove = pair_excitations.pop(0)
if ex_to_remove in copy_excitations:
# 'Move' the first entry of same_mo_index from copy_excitations to result
# 'Move' the first pair excitation from copy_excitations to result
index = copy_excitations.index(ex_to_remove)
result.append(copy_excitations.pop(index))

Expand All @@ -253,77 +261,96 @@ def sort_excitations(excitations):
result.append(copy_excitations.pop(index))
prev = None
continue
# Remove the first entry from the sorted list of remaining excitations and add it to result
prev = copy_excitations.pop(0)
result.append(prev)
if copy_excitations:
# Remove the first entry from the sorted list of remaining excitations and add it to result
prev = copy_excitations.pop(0)
result.append(prev)
return result


# def ucc_ansatz(molecule, excitation_level=None, excitations=None, thetas=None, trotter_steps=1, ferm_qubit_map=None):
# """
# Build a circuit corresponding to the UCC ansatz with multiple excitations for a given Molecule.
# If no excitations are given, it defaults to returning the full UCCSD circuit ansatz for the
# Molecule.
#
# Args:
# molecule: Molecule of interest.
# excitation_level: Include excitations up to how many electrons, i.e. ("S", "D", "T", "Q")
# Ignored if `excitations` argument is given. Default is "D", i.e. double excitations
# excitations: List of excitations (e.g. `[[0, 1, 2, 3], [0, 1, 4, 5]]`) used to build the
# UCC circuit. Overrides the `excitation_level` argument
# thetas: Parameters for the excitations. Defaults to an array of zeros if not given
# trotter_steps: number of Trotter steps; i.e. number of times the UCC ansatz is applied with
# theta=theta/trotter_steps. Default is 1
# ferm_qubit_map: fermion-to-qubit transformation. Default is Jordan-Wigner ("jw")
#
# Returns:
# circuit: Qibo Circuit corresponding to the UCC ansatz
# """
# # Get the number of electrons and virtual orbitals from the molecule argument
# n_elec = sum(molecule.nelec) if molecule.n_active_e is None else molecule.n_active_e
# n_orbs = molecule.nso if molecule.n_active_orbs is None else molecule.n_active_orbs
#
# # Define the excitation level to be used if no excitations given
# if excitations is None:
# excitation_levels = ("S", "D", "T", "Q")
# if excitation_level is None:
# excitation_level = "D"
# else:
# # Check validity of input
# assert len(excitation_level) == 1 and excitation_level.upper() in excitation_levels
# # Note: Probably don't be too ambitious and try to do 'T'/'Q' at the moment...
# if excitation_level.upper() in ("T", "Q"):
# raise NotImplementedError("Cannot handle triple and quadruple excitations!")
# # Get the (largest) order of excitation to use
# excitation_order = excitation_levels.index(excitation_level.upper()) + 1
#
# # Generate and sort all the possible excitations
# excitations = []
# for order in range(excitation_order, 0, -1): # Reversed to get higher excitations first
# excitations += sort_excitations(generate_excitations(order, range(0, n_elec), range(n_elec, n_orbs)))
# else:
# # Some checks to ensure the given excitations are valid
# assert all(len(_ex) % 2 == 0 for _ex in excitations), "Excitation with an odd number of elements found!"
#
# # Check if thetas argument given, define to be all zeros if not
# # TODO: Unsure if want to use MP2 guess amplitudes for the doubles? Some say good, some say bad
# # Number of circuit parameters: S->2, D->8, (T/Q->32/128; Not sure?)
# n_parameters = 2 * len([_ex for _ex in excitations if len(_ex) == 2]) # Singles
# n_parameters += 8 * len([_ex for _ex in excitations if len(_ex) == 4]) # Doubles
# if thetas is None:
# thetas = np.zeros(n_parameters)
# else:
# # Check that number of circuit variables (i.e. thetas) matches the number of circuit parameters
# assert len(thetas) == n_parameters, "Number of input parameters doesn't match the number of circuit parameters!"
#
# # Build the circuit
# circuit = models.Circuit(n_orbs)
# for excitation, theta in zip(excitations, thetas):
# # coeffs = []
# circuit += ucc_circuit(
# n_orbs, excitation, theta, trotter_steps=trotter_steps, ferm_qubit_map=ferm_qubit_map # , coeffs=coeffs)
# )
# # if isinstance(all_coeffs, list):
# # all_coeffs.append(np.array(coeffs))
#
# return circuit
def ucc_ansatz(
molecule,
excitation_level=None,
excitations=None,
thetas=None,
trotter_steps=1,
ferm_qubit_map=None,
include_hf=True,
use_mp2_guess=True,
):
"""
Convenience function for buildng a circuit corresponding to the UCC ansatz with multiple excitations for a given ``Molecule``.
If no excitations are given, it defaults to returning the full UCCSD circuit ansatz.
Args:
molecule: The ``Molecule`` of interest.
excitation_level: Include excitations up to how many electrons, i.e. ``"S"`` or ``"D"``.
Ignored if ``excitations`` argument is given. Default: ``"D"``, i.e. double excitations
excitations: List of excitations (e.g. ``[[0, 1, 2, 3], [0, 1, 4, 5]]``) used to build the
UCC circuit. Overrides the ``excitation_level`` argument
thetas: Parameters for the excitations. Default value depends on the ``use_mp2_guess`` argument.
trotter_steps: number of Trotter steps; i.e. number of times the UCC ansatz is applied with
``theta`` = ``theta / trotter_steps``. Default: 1
ferm_qubit_map: fermion-to-qubit transformation. Default: Jordan-Wigner (``"jw"``)
include_hf: Whether or not to start the circuit with a Hartree-Fock circuit. Default: ``True``
use_mp2_guess: Whether to use MP2 amplitudes or a numpy zero array as the initial guess parameter. Default: ``True``;
use the MP2 amplitudes as the default guess parameters
Returns:
Qibo ``Circuit``: Circuit corresponding to an UCC ansatz
"""
# Get the number of electrons and spin-orbitals from the molecule argument
n_elec = sum(molecule.nelec) if molecule.n_active_e is None else molecule.n_active_e
n_orbs = molecule.nso if molecule.n_active_orbs is None else molecule.n_active_orbs

# Define the excitation level to be used if no excitations given
if excitations is None:
excitation_levels = ("S", "D", "T", "Q")
if excitation_level is None:
excitation_level = "D"
else:
# Check validity of input
assert (
len(excitation_level) == 1 and excitation_level.upper() in excitation_levels
), "Unknown input for excitation_level"
# Note: Probably don't be too ambitious and try to do 'T'/'Q' at the moment...
if excitation_level.upper() in ("T", "Q"):
raise NotImplementedError("Cannot handle triple and quadruple excitations!")
# Get the (largest) order of excitation to use
excitation_order = excitation_levels.index(excitation_level.upper()) + 1

# Generate and sort all the possible excitations
excitations = []
for order in range(excitation_order, 0, -1): # Reversed to get higher excitations first
excitations += sort_excitations(generate_excitations(order, range(0, n_elec), range(n_elec, n_orbs)))
else:
# Some checks to ensure the given excitations are valid
assert all(len(_ex) % 2 == 0 for _ex in excitations), "Excitation with an odd number of elements found!"

# Check if thetas argument given, define to be all zeros if not
# Number of circuit parameters: S->2, D->8, (T/Q->32/128; Not sure?)
n_parameters = 2 * len([_ex for _ex in excitations if len(_ex) == 2]) # Singles
n_parameters += 8 * len([_ex for _ex in excitations if len(_ex) == 4]) # Doubles
if thetas is None:
if use_mp2_guess:
thetas = np.array([mp2_amplitude(excitation, molecule.eps, molecule.tei) for excitation in excitations])
else:
thetas = np.zeros(n_parameters)
else:
# Check that number of circuit variables (i.e. thetas) matches the number of circuit parameters
assert len(thetas) == n_parameters, "Number of input parameters doesn't match the number of circuit parameters!"

# Build the circuit
if include_hf:
circuit = hf_circuit(n_orbs, n_elec, ferm_qubit_map=ferm_qubit_map)
else:
circuit = models.Circuit(n_orbs)
for excitation, theta in zip(excitations, thetas):
# coeffs = []
circuit += ucc_circuit(
n_orbs, excitation, theta, trotter_steps=trotter_steps, ferm_qubit_map=ferm_qubit_map # , coeffs=coeffs)
)
# if isinstance(all_coeffs, list):
# all_coeffs.append(np.array(coeffs))

return circuit
Loading

0 comments on commit 5c7c7e8

Please sign in to comment.