Skip to content

raulpoppiel/urssa

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 

Repository files navigation

urssa Unsupervised Routine Soil Spectral Analysis

visitor badge pedometricians have come here

About

The urssa code provides basic unsupervised functionalities for the use of spectra in laboratory routines. This repository provides a csv file conainting 350-2500 nm soil spectra and codes (divided into modules) following a reproducible example.

Core functionalities (routines)

  • Unsupervised spectral clustering of samples
  • Internal quality control (outlier detection and removal) of analytical results
  • Correlation analysis between soil data and spectra
  • Samples selection for traditional analysis
  • Samples selection for soil prediction (cost reduction)

Data available for download

The Soil_data_spectra.csv file contains:

  • Soil Attributes data:
    • Clay (g kg-1)
    • Sand (g kg-1)
    • Organic Matter - OM (g kg-1)
    • Cation Exchange Capacity - CEC (mmolc kg-1)
    • Base Saturation - V (%)
  • Soil reflectance spectra:
    • From 350 to 2500 nm at 1 nm resolution

R Codes

urssa_01.R:

  • MODULE 1: Importing and pre-processing data
  • MODULE 2: Unsupervised spectral clustering of samples
  • MODULE 3: Variable importance
  • MODULE 4: Identification of soil attribute outliers
  • MODULE 5: Correlation analysis
  • MODULE 6: Plotting boxplot and spectra by cluster and Laboratory

urssa_02.R:

  • MODULE 1: Quantification of outliers

urssa_03.R:

  • MODULE 1: Splitting data into training and test subsets
  • MODULE 2: Assessment of subsets
  • MODULE 3: Soil attributes modeling with CUBIST
  • MODULE 4: Assessment of prediction results

Methodological flowchart

Reference

Please, cite the following paper when using urssa:

Poppiel, R.R., Paiva, A.F. da S., Demattê, J.A.M., 2022. Bridging the gap between soil spectroscopy and traditional laboratory: Insights for routine implementation. Geoderma 425, 116029. https://doi.org/10.1016/j.geoderma.2022.116029

About

Unsupervised Routine Soil Spectral Analysis

Resources

License

Stars

Watchers

Forks