Skip to content

Commit

Permalink
add citations.md
Browse files Browse the repository at this point in the history
  • Loading branch information
rdk committed Nov 12, 2024
1 parent 33dc3c9 commit c054385
Showing 1 changed file with 42 additions and 40 deletions.
82 changes: 42 additions & 40 deletions misc/citations.md
Original file line number Diff line number Diff line change
@@ -1,30 +1,33 @@

# Publications

###

If you use P2Rank, please cite relevant papers:


* [Software article](https://doi.org/10.1186/s13321-018-0285-8) about P2Rank pocket prediction tool
Krivak R, Hoksza D. ***P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure.*** Journal of Cheminformatics. 2018 Aug.
~~~bibtex
@article{p2rank,
title={{P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure}},
author={Kriv{\'a}k, Radoslav and Hoksza, David},
journal={Journal of cheminformatics},
volume={10},
number={1},
pages={39},
year={2018},
publisher={Nature Publishing Group},
doi={10.1186/s13321-018-0285-8}
title={{P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure}},
author={Kriv{\'a}k, Radoslav and Hoksza, David},
journal={Journal of cheminformatics},
volume={10},
number={1},
pages={39},
year={2018},
publisher={Nature Publishing Group},
doi={10.1186/s13321-018-0285-8}
}
~~~

* [A new web-server article](https://doi.org/10.1093/nar/gkac389) about updates in the web interface [prankweb.cz](https://prankweb.cz)
Jakubec D, Skoda P, Krivak R, Novotny M, Hoksza D. ***PrankWeb 3: accelerated ligand-binding site predictions for experimental and modelled protein structures.*** Nucleic Acids Research, Volume 50, Issue W1, 5 July 2022, Pages W593–W597
~~~bibtex
@article{prankweb3,
author = {Jakubec, David and Skoda, Petr and Krivak, Radoslav and Novotny, Marian and Hoksza, David},
title = "{PrankWeb 3: accelerated ligand-binding site predictions for experimental and modelled protein structures}",
author = {Jakubec, David and Skoda, Petr and Krivak, Radoslav and Novotny, Marian and Hoksza, David},
journal = {Nucleic Acids Research},
volume = {50},
number = {W1},
Expand All @@ -41,48 +44,47 @@ If you use P2Rank, please cite relevant papers:
Jendele L, Krivak R, Skoda P, Novotny M, Hoksza D. ***PrankWeb: a web server for ligand binding site prediction and visualization.*** Nucleic Acids Research, Volume 47, Issue W1, 02 July 2019, Pages W345-W349
~~~bibtex
@article{prankweb,
Author="Jendele, L. and Krivak, R. and Skoda, P. and Novotny, M. and Hoksza, D. ",
Title="{{P}rank{W}eb: a web server for ligand binding site prediction and visualization}",
Journal="Nucleic Acids Res.",
Year="2019",
Volume="47",
Number="W1",
Pages="W345-W349",
Month="Jul",
doi={10.1093/nar/gkz424}
title="{{P}rank{W}eb: a web server for ligand binding site prediction and visualization}",
author="Jendele, L. and Krivak, R. and Skoda, P. and Novotny, M. and Hoksza, D. ",
journal="Nucleic Acids Res.",
year="2019",
volume="47",
number="W1",
pages="W345-W349",
month="Jul",
doi={10.1093/nar/gkz424}
}
~~~

* [Conference paper](https://doi.org/10.1007/978-3-319-21233-3_4) introducing P2Rank prediction algorithm
Krivak R, Hoksza D. ***P2RANK: Knowledge-Based Ligand Binding Site Prediction Using Aggregated Local Features.*** International Conference on Algorithms for Computational Biology 2015 Aug 4 (pp. 41-52). Springer
~~~bibtex
@inproceedings{p2rank-alcob,
title={{P2RANK: Knowledge-Based Ligand Binding Site Prediction Using Aggregated Local Features}},
author={Kriv{\'a}k, Radoslav and Hoksza, David},
booktitle={International Conference on Algorithms for Computational Biology},
pages={41--52},
year={2015},
organization={Springer},
doi={10.1007/978-3-319-21233-3_4}
title={{P2RANK: Knowledge-Based Ligand Binding Site Prediction Using Aggregated Local Features}},
author={Kriv{\'a}k, Radoslav and Hoksza, David},
booktitle={International Conference on Algorithms for Computational Biology},
pages={41--52},
year={2015},
organization={Springer},
doi={10.1007/978-3-319-21233-3_4}
}
~~~

* [Research article](https://doi.org/10.1186/s13321-015-0059-5) about PRANK rescoring algorithm (now included in P2Rank)
Krivak R, Hoksza D. ***Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features.*** Journal of Cheminformatics. 2015 Dec.
~~~bibtex
@Article{prank,
author={Kriv{\'a}k, Radoslav
and Hoksza, David},
title={Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features},
journal={Journal of Cheminformatics},
year={2015},
month={Apr},
day={01},
volume={7},
number={1},
pages={12},
abstract={Protein-ligand binding site prediction from a 3D protein structure plays a pivotal role in rational drug design and can be helpful in drug side-effects prediction or elucidation of protein function. Embedded within the binding site detection problem is the problem of pocket ranking -- how to score and sort candidate pockets so that the best scored predictions correspond to true ligand binding sites. Although there exist multiple pocket detection algorithms, they mostly employ a fairly simple ranking function leading to sub-optimal prediction results.},
issn={1758-2946},
doi={10.1186/s13321-015-0059-5}
@article{prank,
author={Kriv{\'a}k, Radoslav and Hoksza, David},
title={Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features},
journal={Journal of Cheminformatics},
year={2015},
month={Apr},
day={01},
volume={7},
number={1},
pages={12},
abstract={Protein-ligand binding site prediction from a 3D protein structure plays a pivotal role in rational drug design and can be helpful in drug side-effects prediction or elucidation of protein function. Embedded within the binding site detection problem is the problem of pocket ranking -- how to score and sort candidate pockets so that the best scored predictions correspond to true ligand binding sites. Although there exist multiple pocket detection algorithms, they mostly employ a fairly simple ranking function leading to sub-optimal prediction results.},
issn={1758-2946},
doi={10.1186/s13321-015-0059-5}
}
~~~

0 comments on commit c054385

Please sign in to comment.