-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #51 from rjojjr/STAGING
Release v2.1.2
- Loading branch information
Showing
6 changed files
with
160 additions
and
75 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
def print_serve_mode_config(args): | ||
print("Running in serve mode") | ||
print() | ||
print("WARNING - Serve mode is currently EXPERIMENTAL and should NEVER be used in a production environment!") | ||
print() | ||
print(f'Using bf16: {str(args.use_bf_16)}') | ||
print(f'Using fp16: {str(args.use_fp_16)}') | ||
print(f'Using 8bit: {str(args.use_8bit)}') | ||
print(f'Using 4bit: {str(args.use_4bit)}') | ||
print(f'Using fp32 CPU Offload: {str(args.fp32_cpu_offload)}') | ||
print() | ||
print(f"Serving {args.serve_model} on port {args.serve_port}") | ||
|
||
|
||
def print_tune_mode_config(args, model_dir, tuner): | ||
print('') | ||
print(f'Using LLM Type: {tuner.llm_type}') | ||
print('') | ||
print(f'Output Directory: {args.output_directory}') | ||
print(f'Base Model: {args.base_model}') | ||
print(f'Model Save Directory: {model_dir}') | ||
|
||
print('') | ||
print(f'Using CPU Only Tuning: {str(args.cpu_only_tuning)}') | ||
print(f'Using tf32: {str(args.use_tf_32)}') | ||
print(f'Using bf16: {str(args.use_bf_16)}') | ||
print(f'Using fp16: {str(args.use_fp_16)}') | ||
print(f'Using 8bit: {str(args.use_8bit)}') | ||
print(f'Using 4bit: {str(args.use_4bit)}') | ||
print(f'Using fp32 CPU Offload: {str(args.fp32_cpu_offload)}') | ||
print('') | ||
print(f'Is Fine-Tuning: {str(args.fine_tune)}') | ||
print(f'Is Merging: {str(args.merge)}') | ||
print(f'Is Pushing: {str(args.push)}') | ||
print('') | ||
print(f'Is Chat Model: {args.is_chat_model}') | ||
print(f'Is Instruct Model: {args.is_instruct_model}') | ||
print(f'Using Additional Vocab Tokens: {args.additional_vocabulary_tokens}') | ||
print(f'Is LangChain Agent Model: {args.use_agent_tokens}') | ||
|
||
|
||
def print_fine_tune_config(args, lora_scale, tune_arguments): | ||
print('') | ||
print(f'Epochs: {str(args.epochs)}') | ||
print(f'Using Tuning Dataset: {args.hf_training_dataset_id if args.hf_training_dataset_id is not None else args.training_data_file}') | ||
|
||
if args.torch_empty_cache_steps is not None: | ||
print(f'Empty Torch Cache After {args.torch_empty_cache_steps} Steps') | ||
print(f'Using Checkpointing: {str(not args.no_checkpoint)}') | ||
if not args.no_checkpoint: | ||
print(f'Using Max Saved Checkpoints: {args.max_saved}') | ||
print(f'Using Batch Size: {str(args.batch_size)}') | ||
print(f'Using Save Strategy: {args.save_strategy}') | ||
print(f'Using Save Steps: {str(args.save_steps)}') | ||
print(f'Using Save Embeddings: {str(args.save_embeddings)}') | ||
if args.target_modules is not None: | ||
print(f'Targeting Modules: {args.target_modules}') | ||
elif args.target_all_modules: | ||
print(f'Targeting Modules: ALL') | ||
else: | ||
print(f'Targeting Modules: LINEAR') | ||
print('') | ||
print(f'Using LoRA R: {str(args.lora_r)}') | ||
print(f'Using LoRA Alpha: {str(args.lora_alpha)}') | ||
print(f'LoRA Adapter Scale(alpha/r): {str(lora_scale)}') | ||
print(f'Using LoRA Dropout: {str(args.lora_dropout)}') | ||
print(f'Using LoRA Bias: {str(args.bias)}') | ||
print() | ||
print(f'Using Optimizer: {args.optimizer_type}') | ||
if 'adamw' in args.optimizer_type: | ||
print(f'Using Base Learning Rate: {str(args.base_learning_rate)}') | ||
print( | ||
f'Using Actual Learning Rate(Base Learning Rate * Batch Size): {str(args.base_learning_rate * args.batch_size)}') | ||
print(f'Learning Rate Scheduler Type: {str(args.lr_scheduler_type)}') | ||
|
||
print(f'Using Warmup Ratio: {args.warmup_ratio}') | ||
print(f'Using Max Sequence Length: {args.max_seq_length}') | ||
print(f'Using Group By Length: {args.group_by_length}') | ||
print(f'Using Weight Decay: {args.weight_decay}') | ||
print(f'Using Max Gradient Norm: {args.max_gradient_norm}') | ||
print(f'Using Gradient Accumulation Steps: {args.gradient_accumulation_steps}') | ||
print() | ||
print(f'Using Do Eval: {args.do_eval}') | ||
if args.do_eval is not None and args.do_eval: | ||
print(f'Using Eval Strategy: {tune_arguments.eval_strategy}') | ||
if tune_arguments.eval_strategy == 'steps': | ||
print(f'Using Eval Steps: {tune_arguments.eval_steps}') | ||
if args.eval_dataset is None: | ||
print(f'Using Eval Dataset: {args.hf_training_dataset_id if args.hf_training_dataset_id is not None else args.training_data_file}') | ||
else: | ||
print(f'Using Eval Dataset: {args.eval_dataset }') | ||
print() | ||
if args.is_instruct_model: | ||
print(f'Using NEFTune Noise Alpha: {args.neftune_noise_alpha}') | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters