Skip to content

Variational DQN encourages efficient exploration and allows for parameter update using black box variational inference

License

Notifications You must be signed in to change notification settings

robintyh1/Variational-DQN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Variational DQN

The implementation of Variational DQN based on Chainer, Tensorflow and Edward. Part of the Chainer code is borrowed from Chainer tutorial on DQN.

Variational DQN leverages variational inference subroutines to update DQN parameters.

Use the code

To run Variational DQN or DQN on Cartpole for 200 episodes

python main_VDQN.py --env CartPole-v1 --episodes 200
python main_DQN.py --env CartPole-v1 --episodes 200

Citations

If you use the code from this repo for academic research, you are very encouraged to cite the following papers.

Tang and Kucukelbir., Variational Deep Q Network. Bayesian Deep Learning Workshop, NIPS, 2017.

Tang and Agrawal., Exploration by Distributional Reinforcement Learning. International Joint Conference on Artificial Intelligence (IJCAI), 2018.

About

Variational DQN encourages efficient exploration and allows for parameter update using black box variational inference

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages