-
Notifications
You must be signed in to change notification settings - Fork 606
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
375 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,371 @@ | ||
// Taken from opencv/modules/python/src2/cv2.cpp | ||
|
||
#include "module.hpp" | ||
|
||
#include "opencv2/core/types_c.h" | ||
|
||
#include "opencv2/opencv_modules.hpp" | ||
|
||
#include "pycompat.hpp" | ||
|
||
static PyObject* opencv_error = 0; | ||
|
||
static int failmsg(const char *fmt, ...) | ||
{ | ||
char str[1000]; | ||
|
||
va_list ap; | ||
va_start(ap, fmt); | ||
vsnprintf(str, sizeof(str), fmt, ap); | ||
va_end(ap); | ||
|
||
PyErr_SetString(PyExc_TypeError, str); | ||
return 0; | ||
} | ||
|
||
struct ArgInfo | ||
{ | ||
const char * name; | ||
bool outputarg; | ||
// more fields may be added if necessary | ||
|
||
ArgInfo(const char * name_, bool outputarg_) | ||
: name(name_) | ||
, outputarg(outputarg_) {} | ||
|
||
// to match with older pyopencv_to function signature | ||
operator const char *() const { return name; } | ||
}; | ||
|
||
class PyAllowThreads | ||
{ | ||
public: | ||
PyAllowThreads() : _state(PyEval_SaveThread()) {} | ||
~PyAllowThreads() | ||
{ | ||
PyEval_RestoreThread(_state); | ||
} | ||
private: | ||
PyThreadState* _state; | ||
}; | ||
|
||
class PyEnsureGIL | ||
{ | ||
public: | ||
PyEnsureGIL() : _state(PyGILState_Ensure()) {} | ||
~PyEnsureGIL() | ||
{ | ||
PyGILState_Release(_state); | ||
} | ||
private: | ||
PyGILState_STATE _state; | ||
}; | ||
|
||
#define ERRWRAP2(expr) \ | ||
try \ | ||
{ \ | ||
PyAllowThreads allowThreads; \ | ||
expr; \ | ||
} \ | ||
catch (const cv::Exception &e) \ | ||
{ \ | ||
PyErr_SetString(opencv_error, e.what()); \ | ||
return 0; \ | ||
} | ||
|
||
using namespace cv; | ||
|
||
static PyObject* failmsgp(const char *fmt, ...) | ||
{ | ||
char str[1000]; | ||
|
||
va_list ap; | ||
va_start(ap, fmt); | ||
vsnprintf(str, sizeof(str), fmt, ap); | ||
va_end(ap); | ||
|
||
PyErr_SetString(PyExc_TypeError, str); | ||
return 0; | ||
} | ||
|
||
class NumpyAllocator : public MatAllocator | ||
{ | ||
public: | ||
NumpyAllocator() { stdAllocator = Mat::getStdAllocator(); } | ||
~NumpyAllocator() {} | ||
|
||
UMatData* allocate(PyObject* o, int dims, const int* sizes, int type, size_t* step) const | ||
{ | ||
UMatData* u = new UMatData(this); | ||
u->data = u->origdata = (uchar*)PyArray_DATA((PyArrayObject*) o); | ||
npy_intp* _strides = PyArray_STRIDES((PyArrayObject*) o); | ||
for( int i = 0; i < dims - 1; i++ ) | ||
step[i] = (size_t)_strides[i]; | ||
step[dims-1] = CV_ELEM_SIZE(type); | ||
u->size = sizes[0]*step[0]; | ||
u->userdata = o; | ||
return u; | ||
} | ||
|
||
UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, AccessFlag flags, UMatUsageFlags usageFlags) const | ||
{ | ||
if( data != 0 ) | ||
{ | ||
CV_Error(Error::StsAssert, "The data should normally be NULL!"); | ||
// probably this is safe to do in such extreme case | ||
return stdAllocator->allocate(dims0, sizes, type, data, step, flags, usageFlags); | ||
} | ||
PyEnsureGIL gil; | ||
|
||
int depth = CV_MAT_DEPTH(type); | ||
int cn = CV_MAT_CN(type); | ||
const int f = (int)(sizeof(size_t)/8); | ||
int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE : | ||
depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT : | ||
depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT : | ||
depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT; | ||
int i, dims = dims0; | ||
cv::AutoBuffer<npy_intp> _sizes(dims + 1); | ||
for( i = 0; i < dims; i++ ) | ||
_sizes[i] = sizes[i]; | ||
if( cn > 1 ) | ||
_sizes[dims++] = cn; | ||
PyObject* o = PyArray_SimpleNew(dims, _sizes.data(), typenum); | ||
if(!o) | ||
CV_Error_(Error::StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims)); | ||
return allocate(o, dims0, sizes, type, step); | ||
} | ||
|
||
bool allocate(UMatData* u, AccessFlag accessFlags, UMatUsageFlags usageFlags) const CV_OVERRIDE | ||
{ | ||
return stdAllocator->allocate(u, accessFlags, usageFlags); | ||
} | ||
|
||
void deallocate(UMatData* u) const CV_OVERRIDE | ||
{ | ||
if(!u) | ||
return; | ||
PyEnsureGIL gil; | ||
CV_Assert(u->urefcount >= 0); | ||
CV_Assert(u->refcount >= 0); | ||
if(u->refcount == 0) | ||
{ | ||
PyObject* o = (PyObject*)u->userdata; | ||
Py_XDECREF(o); | ||
delete u; | ||
} | ||
} | ||
|
||
const MatAllocator* stdAllocator; | ||
}; | ||
|
||
NumpyAllocator g_numpyAllocator; | ||
|
||
|
||
template<typename T> static | ||
bool pyopencv_to(PyObject* obj, T& p, const char* name = "<unknown>"); | ||
|
||
template<typename T> static | ||
PyObject* pyopencv_from(const T& src); | ||
|
||
enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 }; | ||
|
||
// special case, when the convertor needs full ArgInfo structure | ||
static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo info) | ||
{ | ||
// to avoid PyArray_Check() to crash even with valid array | ||
do_numpy_import( ); | ||
|
||
|
||
bool allowND = true; | ||
if(!o || o == Py_None) | ||
{ | ||
if( !m.data ) | ||
m.allocator = &g_numpyAllocator; | ||
return true; | ||
} | ||
|
||
if( PyInt_Check(o) ) | ||
{ | ||
double v[] = {(double)PyInt_AsLong((PyObject*)o), 0., 0., 0.}; | ||
m = Mat(4, 1, CV_64F, v).clone(); | ||
return true; | ||
} | ||
if( PyFloat_Check(o) ) | ||
{ | ||
double v[] = {PyFloat_AsDouble((PyObject*)o), 0., 0., 0.}; | ||
m = Mat(4, 1, CV_64F, v).clone(); | ||
return true; | ||
} | ||
if( PyTuple_Check(o) ) | ||
{ | ||
int i, sz = (int)PyTuple_Size((PyObject*)o); | ||
m = Mat(sz, 1, CV_64F); | ||
for( i = 0; i < sz; i++ ) | ||
{ | ||
PyObject* oi = PyTuple_GET_ITEM(o, i); | ||
if( PyInt_Check(oi) ) | ||
m.at<double>(i) = (double)PyInt_AsLong(oi); | ||
else if( PyFloat_Check(oi) ) | ||
m.at<double>(i) = (double)PyFloat_AsDouble(oi); | ||
else | ||
{ | ||
failmsg("%s is not a numerical tuple", info.name); | ||
m.release(); | ||
return false; | ||
} | ||
} | ||
return true; | ||
} | ||
|
||
if( !PyArray_Check(o) ) | ||
{ | ||
failmsg("%s is not a numpy array, neither a scalar", info.name); | ||
return false; | ||
} | ||
|
||
PyArrayObject* oarr = (PyArrayObject*) o; | ||
|
||
bool needcopy = false, needcast = false; | ||
int typenum = PyArray_TYPE(oarr), new_typenum = typenum; | ||
int type = typenum == NPY_UBYTE ? CV_8U : | ||
typenum == NPY_BYTE ? CV_8S : | ||
typenum == NPY_USHORT ? CV_16U : | ||
typenum == NPY_SHORT ? CV_16S : | ||
typenum == NPY_INT ? CV_32S : | ||
typenum == NPY_INT32 ? CV_32S : | ||
typenum == NPY_FLOAT ? CV_32F : | ||
typenum == NPY_DOUBLE ? CV_64F : -1; | ||
|
||
if( type < 0 ) | ||
{ | ||
if( typenum == NPY_INT64 || typenum == NPY_UINT64 || type == NPY_LONG ) | ||
{ | ||
needcopy = needcast = true; | ||
new_typenum = NPY_INT; | ||
type = CV_32S; | ||
} | ||
else | ||
{ | ||
failmsg("%s data type = %d is not supported", info.name, typenum); | ||
return false; | ||
} | ||
} | ||
|
||
#ifndef CV_MAX_DIM | ||
const int CV_MAX_DIM = 32; | ||
#endif | ||
|
||
int ndims = PyArray_NDIM(oarr); | ||
if(ndims >= CV_MAX_DIM) | ||
{ | ||
failmsg("%s dimensionality (=%d) is too high", info.name, ndims); | ||
return false; | ||
} | ||
|
||
int size[CV_MAX_DIM+1]; | ||
size_t step[CV_MAX_DIM+1]; | ||
size_t elemsize = CV_ELEM_SIZE1(type); | ||
const npy_intp* _sizes = PyArray_DIMS(oarr); | ||
const npy_intp* _strides = PyArray_STRIDES(oarr); | ||
bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX; | ||
|
||
for( int i = ndims-1; i >= 0 && !needcopy; i-- ) | ||
{ | ||
// these checks handle cases of | ||
// a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases | ||
// b) transposed arrays, where _strides[] elements go in non-descending order | ||
// c) flipped arrays, where some of _strides[] elements are negative | ||
if( (i == ndims-1 && (size_t)_strides[i] != elemsize) || | ||
(i < ndims-1 && _strides[i] < _strides[i+1]) ) | ||
needcopy = true; | ||
} | ||
|
||
if( ismultichannel && _strides[1] != (npy_intp)elemsize*_sizes[2] ) | ||
needcopy = true; | ||
|
||
if (needcopy) | ||
{ | ||
if (info.outputarg) | ||
{ | ||
failmsg("Layout of the output array %s is incompatible with cv::Mat (step[ndims-1] != elemsize or step[1] != elemsize*nchannels)", info.name); | ||
return false; | ||
} | ||
|
||
if( needcast ) { | ||
o = PyArray_Cast(oarr, new_typenum); | ||
oarr = (PyArrayObject*) o; | ||
} | ||
else { | ||
oarr = PyArray_GETCONTIGUOUS(oarr); | ||
o = (PyObject*) oarr; | ||
} | ||
|
||
_strides = PyArray_STRIDES(oarr); | ||
} | ||
|
||
for(int i = 0; i < ndims; i++) | ||
{ | ||
size[i] = (int)_sizes[i]; | ||
step[i] = (size_t)_strides[i]; | ||
} | ||
|
||
// handle degenerate case | ||
if( ndims == 0) { | ||
size[ndims] = 1; | ||
step[ndims] = elemsize; | ||
ndims++; | ||
} | ||
|
||
if( ismultichannel ) | ||
{ | ||
ndims--; | ||
type |= CV_MAKETYPE(0, size[2]); | ||
} | ||
|
||
if( ndims > 2 && !allowND ) | ||
{ | ||
failmsg("%s has more than 2 dimensions", info.name); | ||
return false; | ||
} | ||
|
||
m = Mat(ndims, size, type, PyArray_DATA(oarr), step); | ||
m.u = g_numpyAllocator.allocate(o, ndims, size, type, step); | ||
m.addref(); | ||
|
||
if( !needcopy ) | ||
{ | ||
Py_INCREF(o); | ||
} | ||
m.allocator = &g_numpyAllocator; | ||
|
||
return true; | ||
} | ||
|
||
template<> | ||
bool pyopencv_to(PyObject* o, Mat& m, const char* name) | ||
{ | ||
return pyopencv_to(o, m, ArgInfo(name, 0)); | ||
} | ||
|
||
PyObject* pyopencv_from(const Mat& m) | ||
{ | ||
if( !m.data ) | ||
Py_RETURN_NONE; | ||
Mat temp, *p = (Mat*)&m; | ||
if(!p->u || p->allocator != &g_numpyAllocator) | ||
{ | ||
temp.allocator = &g_numpyAllocator; | ||
ERRWRAP2(m.copyTo(temp)); | ||
p = &temp; | ||
} | ||
PyObject* o = (PyObject*)p->u->userdata; | ||
Py_INCREF(o); | ||
return o; | ||
} | ||
|
||
int convert_to_CvMat2(const PyObject* o, cv::Mat& m) | ||
{ | ||
pyopencv_to(const_cast<PyObject*>(o), m, "unknown"); | ||
return 0; | ||
} |