Skip to content

Commit

Permalink
Add OpenCV4 support
Browse files Browse the repository at this point in the history
  • Loading branch information
solosito committed Nov 29, 2019
1 parent bb2ee01 commit e797e0e
Show file tree
Hide file tree
Showing 3 changed files with 375 additions and 2 deletions.
2 changes: 1 addition & 1 deletion cv_bridge/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ else()
endif()

find_package(sensor_msgs REQUIRED)
find_package(OpenCV 3 REQUIRED
find_package(OpenCV REQUIRED
COMPONENTS
opencv_core
opencv_imgproc
Expand Down
4 changes: 3 additions & 1 deletion cv_bridge/src/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,9 @@ if(PYTHON_VERSION_MAJOR VERSION_EQUAL 3)
add_definitions(-DPYTHON3)
endif()

if(OpenCV_VERSION_MAJOR VERSION_EQUAL 3)
if(OpenCV_VERSION_MAJOR VERSION_EQUAL 4)
add_library(${PROJECT_NAME}_boost module.cpp module_opencv4.cpp)
elseif(OpenCV_VERSION_MAJOR VERSION_EQUAL 3)
add_library(${PROJECT_NAME}_boost module.cpp module_opencv3.cpp)
else()
add_library(${PROJECT_NAME}_boost module.cpp module_opencv2.cpp)
Expand Down
371 changes: 371 additions & 0 deletions cv_bridge/src/module_opencv4.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,371 @@
// Taken from opencv/modules/python/src2/cv2.cpp

#include "module.hpp"

#include "opencv2/core/types_c.h"

#include "opencv2/opencv_modules.hpp"

#include "pycompat.hpp"

static PyObject* opencv_error = 0;

static int failmsg(const char *fmt, ...)
{
char str[1000];

va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);

PyErr_SetString(PyExc_TypeError, str);
return 0;
}

struct ArgInfo
{
const char * name;
bool outputarg;
// more fields may be added if necessary

ArgInfo(const char * name_, bool outputarg_)
: name(name_)
, outputarg(outputarg_) {}

// to match with older pyopencv_to function signature
operator const char *() const { return name; }
};

class PyAllowThreads
{
public:
PyAllowThreads() : _state(PyEval_SaveThread()) {}
~PyAllowThreads()
{
PyEval_RestoreThread(_state);
}
private:
PyThreadState* _state;
};

class PyEnsureGIL
{
public:
PyEnsureGIL() : _state(PyGILState_Ensure()) {}
~PyEnsureGIL()
{
PyGILState_Release(_state);
}
private:
PyGILState_STATE _state;
};

#define ERRWRAP2(expr) \
try \
{ \
PyAllowThreads allowThreads; \
expr; \
} \
catch (const cv::Exception &e) \
{ \
PyErr_SetString(opencv_error, e.what()); \
return 0; \
}

using namespace cv;

static PyObject* failmsgp(const char *fmt, ...)
{
char str[1000];

va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);

PyErr_SetString(PyExc_TypeError, str);
return 0;
}

class NumpyAllocator : public MatAllocator
{
public:
NumpyAllocator() { stdAllocator = Mat::getStdAllocator(); }
~NumpyAllocator() {}

UMatData* allocate(PyObject* o, int dims, const int* sizes, int type, size_t* step) const
{
UMatData* u = new UMatData(this);
u->data = u->origdata = (uchar*)PyArray_DATA((PyArrayObject*) o);
npy_intp* _strides = PyArray_STRIDES((PyArrayObject*) o);
for( int i = 0; i < dims - 1; i++ )
step[i] = (size_t)_strides[i];
step[dims-1] = CV_ELEM_SIZE(type);
u->size = sizes[0]*step[0];
u->userdata = o;
return u;
}

UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, AccessFlag flags, UMatUsageFlags usageFlags) const
{
if( data != 0 )
{
CV_Error(Error::StsAssert, "The data should normally be NULL!");
// probably this is safe to do in such extreme case
return stdAllocator->allocate(dims0, sizes, type, data, step, flags, usageFlags);
}
PyEnsureGIL gil;

int depth = CV_MAT_DEPTH(type);
int cn = CV_MAT_CN(type);
const int f = (int)(sizeof(size_t)/8);
int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE :
depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT :
depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT :
depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
int i, dims = dims0;
cv::AutoBuffer<npy_intp> _sizes(dims + 1);
for( i = 0; i < dims; i++ )
_sizes[i] = sizes[i];
if( cn > 1 )
_sizes[dims++] = cn;
PyObject* o = PyArray_SimpleNew(dims, _sizes.data(), typenum);
if(!o)
CV_Error_(Error::StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
return allocate(o, dims0, sizes, type, step);
}

bool allocate(UMatData* u, AccessFlag accessFlags, UMatUsageFlags usageFlags) const CV_OVERRIDE
{
return stdAllocator->allocate(u, accessFlags, usageFlags);
}

void deallocate(UMatData* u) const CV_OVERRIDE
{
if(!u)
return;
PyEnsureGIL gil;
CV_Assert(u->urefcount >= 0);
CV_Assert(u->refcount >= 0);
if(u->refcount == 0)
{
PyObject* o = (PyObject*)u->userdata;
Py_XDECREF(o);
delete u;
}
}

const MatAllocator* stdAllocator;
};

NumpyAllocator g_numpyAllocator;


template<typename T> static
bool pyopencv_to(PyObject* obj, T& p, const char* name = "<unknown>");

template<typename T> static
PyObject* pyopencv_from(const T& src);

enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };

// special case, when the convertor needs full ArgInfo structure
static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo info)
{
// to avoid PyArray_Check() to crash even with valid array
do_numpy_import( );


bool allowND = true;
if(!o || o == Py_None)
{
if( !m.data )
m.allocator = &g_numpyAllocator;
return true;
}

if( PyInt_Check(o) )
{
double v[] = {(double)PyInt_AsLong((PyObject*)o), 0., 0., 0.};
m = Mat(4, 1, CV_64F, v).clone();
return true;
}
if( PyFloat_Check(o) )
{
double v[] = {PyFloat_AsDouble((PyObject*)o), 0., 0., 0.};
m = Mat(4, 1, CV_64F, v).clone();
return true;
}
if( PyTuple_Check(o) )
{
int i, sz = (int)PyTuple_Size((PyObject*)o);
m = Mat(sz, 1, CV_64F);
for( i = 0; i < sz; i++ )
{
PyObject* oi = PyTuple_GET_ITEM(o, i);
if( PyInt_Check(oi) )
m.at<double>(i) = (double)PyInt_AsLong(oi);
else if( PyFloat_Check(oi) )
m.at<double>(i) = (double)PyFloat_AsDouble(oi);
else
{
failmsg("%s is not a numerical tuple", info.name);
m.release();
return false;
}
}
return true;
}

if( !PyArray_Check(o) )
{
failmsg("%s is not a numpy array, neither a scalar", info.name);
return false;
}

PyArrayObject* oarr = (PyArrayObject*) o;

bool needcopy = false, needcast = false;
int typenum = PyArray_TYPE(oarr), new_typenum = typenum;
int type = typenum == NPY_UBYTE ? CV_8U :
typenum == NPY_BYTE ? CV_8S :
typenum == NPY_USHORT ? CV_16U :
typenum == NPY_SHORT ? CV_16S :
typenum == NPY_INT ? CV_32S :
typenum == NPY_INT32 ? CV_32S :
typenum == NPY_FLOAT ? CV_32F :
typenum == NPY_DOUBLE ? CV_64F : -1;

if( type < 0 )
{
if( typenum == NPY_INT64 || typenum == NPY_UINT64 || type == NPY_LONG )
{
needcopy = needcast = true;
new_typenum = NPY_INT;
type = CV_32S;
}
else
{
failmsg("%s data type = %d is not supported", info.name, typenum);
return false;
}
}

#ifndef CV_MAX_DIM
const int CV_MAX_DIM = 32;
#endif

int ndims = PyArray_NDIM(oarr);
if(ndims >= CV_MAX_DIM)
{
failmsg("%s dimensionality (=%d) is too high", info.name, ndims);
return false;
}

int size[CV_MAX_DIM+1];
size_t step[CV_MAX_DIM+1];
size_t elemsize = CV_ELEM_SIZE1(type);
const npy_intp* _sizes = PyArray_DIMS(oarr);
const npy_intp* _strides = PyArray_STRIDES(oarr);
bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX;

for( int i = ndims-1; i >= 0 && !needcopy; i-- )
{
// these checks handle cases of
// a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases
// b) transposed arrays, where _strides[] elements go in non-descending order
// c) flipped arrays, where some of _strides[] elements are negative
if( (i == ndims-1 && (size_t)_strides[i] != elemsize) ||
(i < ndims-1 && _strides[i] < _strides[i+1]) )
needcopy = true;
}

if( ismultichannel && _strides[1] != (npy_intp)elemsize*_sizes[2] )
needcopy = true;

if (needcopy)
{
if (info.outputarg)
{
failmsg("Layout of the output array %s is incompatible with cv::Mat (step[ndims-1] != elemsize or step[1] != elemsize*nchannels)", info.name);
return false;
}

if( needcast ) {
o = PyArray_Cast(oarr, new_typenum);
oarr = (PyArrayObject*) o;
}
else {
oarr = PyArray_GETCONTIGUOUS(oarr);
o = (PyObject*) oarr;
}

_strides = PyArray_STRIDES(oarr);
}

for(int i = 0; i < ndims; i++)
{
size[i] = (int)_sizes[i];
step[i] = (size_t)_strides[i];
}

// handle degenerate case
if( ndims == 0) {
size[ndims] = 1;
step[ndims] = elemsize;
ndims++;
}

if( ismultichannel )
{
ndims--;
type |= CV_MAKETYPE(0, size[2]);
}

if( ndims > 2 && !allowND )
{
failmsg("%s has more than 2 dimensions", info.name);
return false;
}

m = Mat(ndims, size, type, PyArray_DATA(oarr), step);
m.u = g_numpyAllocator.allocate(o, ndims, size, type, step);
m.addref();

if( !needcopy )
{
Py_INCREF(o);
}
m.allocator = &g_numpyAllocator;

return true;
}

template<>
bool pyopencv_to(PyObject* o, Mat& m, const char* name)
{
return pyopencv_to(o, m, ArgInfo(name, 0));
}

PyObject* pyopencv_from(const Mat& m)
{
if( !m.data )
Py_RETURN_NONE;
Mat temp, *p = (Mat*)&m;
if(!p->u || p->allocator != &g_numpyAllocator)
{
temp.allocator = &g_numpyAllocator;
ERRWRAP2(m.copyTo(temp));
p = &temp;
}
PyObject* o = (PyObject*)p->u->userdata;
Py_INCREF(o);
return o;
}

int convert_to_CvMat2(const PyObject* o, cv::Mat& m)
{
pyopencv_to(const_cast<PyObject*>(o), m, "unknown");
return 0;
}

0 comments on commit e797e0e

Please sign in to comment.