Skip to content

Commit

Permalink
Merge pull request #324 from MortezaMahdaviMortazavi/master
Browse files Browse the repository at this point in the history
Add files via upload
  • Loading branch information
imani authored Feb 22, 2024
2 parents c96585b + abcaafe commit 63885e6
Showing 1 changed file with 273 additions and 0 deletions.
273 changes: 273 additions & 0 deletions hazm/ner.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,273 @@
import subprocess
from typing import Tuple , List
from tqdm import tqdm



def prepare_conll_data_format(
path: str,
sep: str = "\t",
verbose: bool = True,
) -> Tuple[List[List[str]], List[List[str]]]:
"""
Prepare data in CoNNL-like format.
Args:
- path (str): The path to the CoNNL-formatted file.
- sep (str): Separator used to split tokens and labels. Default is "\t".
- lower (bool): Flag indicating whether to convert tokens to lowercase. Default is True.
- verbose (bool): Flag indicating whether to display progress bar. Default is True.
Returns:
- Tuple[List[List[str]], List[List[str]]]: A tuple containing token sequences and label sequences.
"""
# Initialize lists to store token and label sequences
token_seq = []
label_seq = []

# Open the file and read line by line
with open(path, mode="r", encoding="utf-8") as fp:
tokens = []
labels = []

# Optionally display a progress bar
if verbose:
fp = tqdm(fp)

# Iterate through each line in the file
for line in fp:
# If the line is not empty
if line != "\n":
try:
# Split the line into token and label using the specified separator
token, label = line.strip().split(sep)
tokens.append(token)
labels.append(label)
except:
continue
else:
# If encounter an empty line, indicates the end of a sentence
if len(tokens) > 0:
token_seq.append(tokens)
label_seq.append(labels)
tokens = []
labels = []

return token_seq, label_seq


def convert_to_spacy_format(data):
"""
Convert data from CoNNL-like format to SpaCy format.
Args:
- data (List[Tuple[str, str]]): List of tuples containing token-label pairs.
Returns:
- Tuple[str, List[Tuple[int, int, str]]]: A tuple containing the processed text and entity annotations.
"""
# Initialize variables to store text and entities
text = ''
entities = []

# Iterate through each token-label pair
for word, label in data:
# If the label is 'O', append the word to the text
if label == 'O':
text += ' ' + word
else:
# If the label indicates an entity, update text and entities accordingly
text += ' ' + word
if text:
entities.append((len(text) - len(word) - 1, len(text) - 1, label))
else:
entities.append((0, len(word) - 1, label))

# Merge adjacent entities with the same label
if text:
return text.strip(), merge_tags(entities)
else:
return text, []

def merge_tags(tags):
"""
Merge adjacent entities with the same label.
Args:
- tags (List[Tuple[int, int, str]]): List of entity annotations.
Returns:
- List[Tuple[int, int, str]]: List of merged entity annotations.
"""
merged_tags = []
current_tag = None
start = None
end = None

for i, (start_idx, end_idx, tag) in enumerate(tags):
if tag.startswith('B-'):
if current_tag is not None:
merged_tags.append((start, end, current_tag))
current_tag = tag[2:]
start = start_idx
end = end_idx
elif tag.startswith('I-'):
if current_tag is not None and tag[2:] == current_tag:
end = end_idx
else: # tag == 'O'
if current_tag is not None:
merged_tags.append((start, end, current_tag))
current_tag = None

if current_tag is not None:
merged_tags.append((start, end, current_tag))

return merged_tags




class BaseNER(object):
def __init__(self,model_path):
"""
load_data: Load data from a file or any data source.
preprocess_data: Preprocess the loaded data, including tokenization, normalization, and any other necessary steps.
train_model: Train the NER model using the preprocessed data.
evaluate_model: Evaluate the trained model using appropriate metrics.
predict_entities: Predict named entities in new text using the trained model.
save_model: Save the trained NER model for future use.
load_model: Load a pre-trained NER model from disk.
"""
pass



class HazmNER(BaseNER):
def __init__(self, model_path):
"""
Initialize the HazmNER object.
Parameters:
model_path (str): The path to the pre-trained NER model.
"""
super().__init__(model_path)
self.model_path = model_path
self.model = self.load_model(model_path)

def predict_entities(self, sentences):
"""
Predict named entities in a list of sentences.
Parameters:
sentences (list of str): List of sentences to predict named entities.
Returns:
list of list of tuple: Predicted named entities for each sentence.
"""
names = []
for sentence in sentences:
entities = self.predict_entity(sentence)
names.append(entities)
return names

def predict_entity(self, sentence):
"""
Predict named entities in a single sentence.
Parameters:
sentence (str): Input sentence to predict named entities.
Returns:
list of tuple: Predicted named entities in the input sentence.
"""
doc = self.model(sentence)
entities = [(ent.text, ent.label_) for ent in doc.ents]
return entities

def evaluate_model(self, dataset_path):
"""
Evaluate the performance of the NER model on a dataset.
Parameters:
dataset_path (str): Path to the evaluation dataset.
"""
subprocess.run(f"python -m spacy evaluate {self.model_path} {dataset_path}")


def _save_spacy_data(self, data, save_path):
"""
Save data in Spacy format.
Parameters:
data (list of tuple): Data to be saved in Spacy format.
save_path (str): Path to save the Spacy data.
"""
nlp = spacy.blank("fa")
db = DocBin()
for text, annotations in tqdm(data):
doc = nlp(text)
ents = []
if annotations:
for start, end, label in annotations:
span = doc.char_span(start, end, label=label)
ents.append(span)
else:
continue
doc.ents = ents
db.add(doc)
db.to_disk(save_path)

def _preprocess_data(self, data_path, save_path, sep, set_type='train'):
"""
Preprocess data for training or evaluation.
Parameters:
data_path (str): Path to the data file.
save_path (str): Path to save the preprocessed data.
sep (str): Separator used in the data file.
set_type (str): Type of data (train or val).
Raises:
AssertionError: If set_type is not 'train' or 'val'.
"""
assert set_type in ['train', 'val']
data = []
spacy_data = []
tokens, entities = prepare_conll_data_format(data_path, sep=sep, verbose=False)
for i in range(len(tokens)):
data.append(list(zip(tokens[i], entities[i])))

for sample in data:
spacy_data.append(convert_to_spacy_format(sample))

self._save_spacy_data(spacy_data, save_path + set_type + ".spacy")


def train_model(self, model_save_path, train_path, dev_path, data_save_path, sep):
"""
Train the NER model.
Parameters:
model_save_path (str): Path to save the trained model.
train_path (str): Path to the training data.
dev_path (str): Path to the validation data.
data_save_path (str): Path to save the preprocessed data.
sep (str): Separator used in the data files.
"""
self._preprocess_data(train_path, save_path=data_save_path, sep=sep)
self._preprocess_data(dev_path, save_patdata_0h=data_save_path, sep=sep)
subprocess.run(f"python -m spacy train config.cfg --output {model_save_path} --paths.train {train_path+'train.spacy'} --paths.dev {dev_path+'dev.spacy'}")
self.model = self._load_model(model_save_path)

def _load_model(self, model_path):
"""
Load the trained NER model.
Parameters:
model_path (str): Path to the trained model.
Returns:
spacy.Language: Loaded NER model.
"""
return spacy.load(model_path)

0 comments on commit 63885e6

Please sign in to comment.