keras 2.6.1
-
New family of preprocessing layers. These are the spiritual successor to the
tfdatasets::step_*
family of data transformers (to be deprecated in a future release). See the new vignette "Working with Preprocessing Layers" for details.
New functions:Image preprocessing:
layer_resizing()
layer_rescaling()
layer_center_crop()
Image augmentation:
layer_random_crop()
layer_random_flip()
layer_random_translation()
layer_random_rotation()
layer_random_zoom()
layer_random_contrast()
layer_random_height()
layer_random_width()
Categorical features preprocessing:
layer_category_encoding()
layer_hashing()
layer_integer_lookup()
layer_string_lookup()
Numerical features preprocessing:
layer_normalization()
layer_discretization()
These join the previous set of text preprocessing functions, each of which have some minor changes:
layer_text_vectorization()
(changed arguments)get_vocabulary()
set_vocabulary()
adapt()
-
adapt()
changes:- Now accepts all features preprocessing layers, previously
onlylayer_text_vectorization()
instances were valid. reset_state
argument is removed. It only ever accepted the default value ofTRUE
.- New arguments
batch_size
andsteps
. - Now returns the adapted layer invisibly for composability with
%>%
(previously returnedNULL
)
- Now accepts all features preprocessing layers, previously
-
get_vocabulary()
gains ainclude_special_tokens
argument. -
set_vocabulary()
:- Now returns the adapted layer invisibly for composability with
%>%
(previously returnedNULL
) - Signature simplified. Deprecated arguments (
df_data
oov_df_value
) are now subsumed in...
.
- Now returns the adapted layer invisibly for composability with
-
layer_text_vectorization()
:- valid values for argument
output_mode
change:"binary"
is renamed to"multi_hot"
and
"tf-idf"
is renamed to"tf_idf"
(backwards compatibility is preserved). - Fixed an issue where valid values of
output_mode = "int"
would incorrectly
return a ragged tensor output shape.
- valid values for argument
-
Existing layer instances gain the ability to be added to sequential models via a call. E.g.:
layer <- layer_dense(units = 10) model <- keras_model_sequential(input_shape = c(1,2,3)) %>% layer()
-
Functions in the merging layer family gain the ability to return a layer instance if
the first argumentinputs
is missing. (affected:layer_concatenate()
,layer_add()
,
layer_subtract()
,layer_multiply()
,layer_average()
,layer_maximum()
,
layer_minimum()
,layer_dot()
) -
%py_class%
gains the ability to delay initializing the Python session until first use.
It is now safe to implement and export%py_class%
objects in an R package. -
Fixed an issue in
layer_input()
where passing a tensorflowDType
objects to argumentdtype
would throw an error. -
Fixed an issue in
compile()
where passing an R function via an in-line
call would result in an error from subsequentfit()
calls.
(e.g.,compile(loss = function(y_true, y_pred) my_loss(y_true, y_pred))
now succeeds) -
clone_model()
gains aclone_function
argument that allows you to customize each layer as it is cloned. -
Bumped minimum R version to 3.4. Expanded CI to test on all supported R version. Fixed regression that prevented package installation on R <= 3.4