This repository has been archived by the owner on Mar 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 736
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
174 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
# RAG Local CLI Pack | ||
|
||
This LlamaPack implements a fully local version of our [RAG CLI](https://docs.llamaindex.ai/en/stable/use_cases/q_and_a/rag_cli.html), | ||
with Mistral (through Ollama) and [BGE-M3](https://huggingface.co/BAAI/bge-m3). | ||
|
||
## CLI Usage | ||
|
||
You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package: | ||
|
||
```bash | ||
llamaindex-cli download-llamapack LocalRAGCLIPack --download-dir ./local_rag_cli_pack | ||
``` | ||
|
||
You can then inspect the files at `./local_rag_cli_pack` and use them as a template for your own project! | ||
|
||
## Code Usage | ||
|
||
You can download the pack to a directory. **NOTE**: You must specify `skip_load=True` - the pack contains multiple files, | ||
which makes it hard to load directly. | ||
|
||
We will show you how to import the agent from these files! | ||
|
||
```python | ||
from llama_index.llama_pack import download_llama_pack | ||
|
||
# download and install dependencies | ||
download_llama_pack( | ||
"LocalRAGCLIPack", "./local_rag_cli_pack" | ||
) | ||
``` | ||
|
||
From here, you can use the pack. The most straightforward way is through the CLI. | ||
|
||
```python | ||
TODO | ||
|
||
``` | ||
|
||
You can also directly get modules from the pack. | ||
|
||
```python | ||
from local_rag_cli_pack.base import LocalRagCLIPack | ||
|
||
pack = LocalRagCLIPack(verbose=True, llm_model_name="mistral", embed_model_name="BAAI/bge-m3") | ||
# will spin up the CLI | ||
pack.run() | ||
|
||
# get modules | ||
rag_cli = pack.get_modules()["rag_cli"] | ||
rag_cli.cli() | ||
|
||
``` |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
"""Local RAG CLI Pack.""" | ||
|
||
from llama_index.ingestion import IngestionPipeline, IngestionCache | ||
from llama_index.query_pipeline.query import QueryPipeline | ||
from llama_index.storage.docstore import SimpleDocumentStore | ||
from llama_index.command_line.rag import RagCLI | ||
from llama_index.text_splitter import SentenceSplitter | ||
from llama_index.embeddings import HuggingFaceEmbedding | ||
from llama_index.llms import Ollama | ||
from llama_index.vector_stores import ChromaVectorStore | ||
from llama_index.utils import get_cache_dir | ||
from llama_index import ServiceContext, VectorStoreIndex | ||
from llama_index.response_synthesizers import CompactAndRefine | ||
from llama_index.query_pipeline import InputComponent | ||
from llama_index.llama_pack.base import BaseLlamaPack | ||
from typing import Optional, Dict, Any | ||
from pathlib import Path | ||
import chromadb | ||
|
||
|
||
def default_ragcli_persist_dir() -> str: | ||
"""Get default RAG CLI persist dir.""" | ||
return str(Path(get_cache_dir()) / "rag_cli_local") | ||
|
||
|
||
def init_local_rag_cli( | ||
persist_dir: Optional[str] = None, | ||
verbose: bool = False, | ||
llm_model_name: str = "mistral", | ||
embed_model_name: str = "BAAI/bge-m3", | ||
) -> RagCLI: | ||
"""Init local RAG CLI.""" | ||
|
||
docstore = SimpleDocumentStore() | ||
persist_dir = persist_dir or default_ragcli_persist_dir() | ||
chroma_client = chromadb.PersistentClient(path=persist_dir) | ||
chroma_collection = chroma_client.create_collection("default", get_or_create=True) | ||
vector_store = ChromaVectorStore( | ||
chroma_collection=chroma_collection, persist_dir=persist_dir | ||
) | ||
print("> Chroma collection initialized") | ||
llm = Ollama(model=llm_model_name, request_timeout=30.0) | ||
print("> LLM initialized") | ||
embed_model = HuggingFaceEmbedding(model_name=embed_model_name) | ||
print('> Embedding model initialized') | ||
|
||
ingestion_pipeline = IngestionPipeline( | ||
transformations=[SentenceSplitter(), embed_model], | ||
vector_store=vector_store, | ||
docstore=docstore, | ||
cache=IngestionCache(), | ||
) | ||
|
||
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model) | ||
retriever = VectorStoreIndex.from_vector_store( | ||
ingestion_pipeline.vector_store, service_context=service_context | ||
).as_retriever(similarity_top_k=8) | ||
response_synthesizer = CompactAndRefine( | ||
service_context=service_context, streaming=True, verbose=True | ||
) | ||
# define query pipeline | ||
query_pipeline = QueryPipeline(verbose=verbose) | ||
query_pipeline.add_modules( | ||
{ | ||
"input": InputComponent(), | ||
"retriever": retriever, | ||
"summarizer": response_synthesizer, | ||
} | ||
) | ||
query_pipeline.add_link("input", "retriever") | ||
query_pipeline.add_link("retriever", "summarizer", dest_key="nodes") | ||
query_pipeline.add_link("input", "summarizer", dest_key="query_str") | ||
|
||
rag_cli_instance = RagCLI( | ||
ingestion_pipeline=ingestion_pipeline, | ||
llm=llm, # optional | ||
persist_dir=persist_dir, | ||
query_pipeline=query_pipeline, | ||
verbose=False | ||
) | ||
return rag_cli_instance | ||
|
||
|
||
class LocalRagCLIPack(BaseLlamaPack): | ||
"""Local RAG CLI Pack.""" | ||
|
||
def __init__( | ||
self, | ||
verbose: bool = False, | ||
persist_dir: Optional[str] = None, | ||
llm_model_name: str = "mistral", | ||
embed_model_name: str = "BAAI/bge-m3", | ||
) -> None: | ||
"""Init params.""" | ||
self.verbose = verbose | ||
self.persist_dir = persist_dir or default_ragcli_persist_dir() | ||
self.llm_model_name = llm_model_name | ||
self.embed_model_name = embed_model_name | ||
self.rag_cli = init_local_rag_cli( | ||
persist_dir=self.persist_dir, | ||
verbose=self.verbose, | ||
llm_model_name=self.llm_model_name, | ||
embed_model_name=self.embed_model_name | ||
) | ||
|
||
def get_modules(self) -> Dict[str, Any]: | ||
"""Get modules.""" | ||
return {"rag_cli": self.rag_cli} | ||
|
||
def run(self, *args: Any, **kwargs: Any) -> Any: | ||
"""Run the pipeline.""" | ||
return self.rag_cli.cli(*args, **kwargs) | ||
|
||
|
||
if __name__ == "__main__": | ||
rag_cli_instance = init_local_rag_cli() | ||
rag_cli_instance.cli() |
Empty file.