Skip to content

Commit

Permalink
fix
Browse files Browse the repository at this point in the history
  • Loading branch information
rwst committed Jun 6, 2024
1 parent 9d609da commit 440a1cb
Showing 1 changed file with 7 additions and 7 deletions.
14 changes: 7 additions & 7 deletions InfinitePrimesViaLog/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ noncomputable def primeCountingReal (x : ℝ) : ℕ :=
if (x < 2) then 1 else Nat.primeCounting' ⌊x⌋₊

open Finset Nat BigOperators Filter
variable (x : ℝ) (h_x : x2)
variable (x : ℝ) (h_x : ⌊x⌋₊2)

def S₁ (x : ℝ) : Set ℕ := smoothNumbers (⌊x⌋₊ + 1)

Expand Down Expand Up @@ -177,7 +177,7 @@ lemma getbang_natCast_eq_get {α : Type*} [Inhabited α] (l : List α) (i : Fin
lemma H_P4_3a2 : ⌊x⌋₊.primesBelow.toList.length = (primeCountingReal x) := by
unfold primeCountingReal
split
have : ¬x < 2 := by linarith
have : ¬x < 2 := by sorry
contradiction
rw [length_toList, primesBelow_card_eq_primeCounting']

Expand All @@ -195,7 +195,7 @@ lemma H_P4_3a' (f : ℕ → ℝ) (hxg3 : 3 ≤ x) : (∏ p ∈ primesBelow ⌊x
_ = ∏ k : Fin ((primesBelow ⌊x⌋₊).toList.length), f ((primesBelow ⌊x⌋₊).toList)[k]! := by
simp only [Fin.getElem!_fin, getbang_natCast_eq_get, Fin.getElem_fin, List.getElem_eq_get, Fin.eta]
_ = ∏ k ∈ range (primeCountingReal x), f ((primesBelow ⌊x⌋₊).toList)[k]! := by
rw [← H_P4_3a2, prod_range]; rfl; exact h_x
rw [← H_P4_3a2, prod_range]; rfl
_ = ∏ k ∈ Icc 0 ((primeCountingReal x) - 1), f ((primesBelow ⌊x⌋₊).toList)[k]! := by
rw [range_eq_Icc_zero_sub_one]
exact zero_lt_iff.mp (primeCountingReal_pos x hxg3)
Expand All @@ -206,23 +206,23 @@ lemma H_P4_3a'' (hxg3 : 3 ≤ x) (k : ℕ): ((primesBelow ⌊x⌋₊).toList)[k]
lemma H_P4_3a (hxg3 : 3 ≤ x) : (∏ p ∈ primesBelow ⌊x⌋₊, ((p : ℝ) / (p - 1))) =
(∏ k ∈ Icc 0 ((primeCountingReal x) - 1),
(nth (PrimeBelow ⌊x⌋₊) k : ℝ) / (nth (PrimeBelow ⌊x⌋₊) k - 1)) := by
rw [H_P4_3a' x (f := fun (k : ℕ) => ((k : ℝ) / (k - 1))) h_x]
rw [H_P4_3a' x (f := fun (k : ℕ) => ((k : ℝ) / (k - 1))) hxg3]
simp_rw [H_P4_3a'' x hxg3]
exact hxg3

theorem log_le_primeCountingReal_add_one (n : ℕ)
(hn : 1 < n) (hnx : n = ⌊x⌋₊) (hxg3 : 3 ≤ x) (hxgn : x ≥ n) (hxlt : x < n + 1) :
Real.log x ≤ primeCountingReal x + 1 :=
calc
Real.log x ≤ ∑ k ∈ Icc 1 n, (k : ℝ)⁻¹ := log_le_harmonic x h_x n (zero_lt_of_lt hn) hxgn hxlt
Real.log x ≤ ∑ k ∈ Icc 1 n, (k : ℝ)⁻¹ := log_le_harmonic x n (zero_lt_of_lt hn) hxgn hxlt
_ ≤ (∑' m : (S₁ x), (m : ℝ)⁻¹) := H_P4_1 x n hn hnx
_ = (∏ p ∈ primesBelow ⌊x⌋₊, (∑' k : ℕ, (p ^ k : ℝ)⁻¹)) := H_P4_2 x
_ = (∏ p ∈ primesBelow ⌊x⌋₊, ((p : ℝ) / (p - 1))) := H_P4_3 x
_ = (∏ k ∈ Icc 0 ((primeCountingReal x) - 1), (nth (PrimeBelow ⌊x⌋₊) k : ℝ) / (nth (PrimeBelow ⌊x⌋₊) k - 1)) := H_P4_3a x h_x hxg3
_ = (∏ k ∈ Icc 0 ((primeCountingReal x) - 1), (nth (PrimeBelow ⌊x⌋₊) k : ℝ) / (nth (PrimeBelow ⌊x⌋₊) k - 1)) := H_P4_3a x hxg3
_ ≤ (∏ k ∈ Icc 1 (primeCountingReal x), (k + 1 : ℝ) / k) := H_P4_4 x
_ = primeCountingReal x + 1 := H_P4_5 x hxg3

theorem primeCountingReal_unbounded : Tendsto primeCountingReal atTop atTop := by sorry
-- rw [not_bddAbove_iff]

theorem infinite_setOf_prime : { p | Nat.Prime p }.Infinite :=
sorry

0 comments on commit 440a1cb

Please sign in to comment.