-
Notifications
You must be signed in to change notification settings - Fork 82
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
sacmehta
committed
Jun 7, 2019
1 parent
9f138f0
commit 5067df1
Showing
151 changed files
with
8,862 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
*.pyc | ||
__pycache__ | ||
.DS_STORE | ||
.idea |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
#Install Conda | ||
wget https://repo.anaconda.com/archive/Anaconda3-5.3.1-Linux-x86_64.sh | ||
bash Anaconda3-5.3.1-Linux-x86_64.sh | ||
rm -rf Anaconda3-5.3.1-Linux-x86_64.sh | ||
|
||
# down grade to 3.6 because Tensorflow (as of 19 Dec, 2018) does not support v3.7 | ||
conda install python=3.6 | ||
conda install pip | ||
|
||
#Install Pytorch | ||
#conda install pytorch torchvision -c pytorch | ||
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch | ||
|
||
|
||
#install thre requirements | ||
pip install -r requirements.txt | ||
|
||
# Install opencv | ||
conda install -c anaconda opencv |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
cd build | ||
python build.py build_ext develop |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
# ============================================ | ||
__author__ = "Sachin Mehta" | ||
__maintainer__ = "Sachin Mehta" | ||
# ============================================ | ||
|
||
# classification related details | ||
classification_datasets = ['imagenet', 'coco'] | ||
classification_schedulers = ['fixed', 'clr', 'hybrid', 'linear', 'poly'] | ||
classification_models = ['shuffle_dw', 'dicenet'] | ||
classification_exp_choices = ['main', 'ablation'] | ||
|
||
# segmentation related details | ||
segmentation_schedulers = ['poly', 'fixed', 'clr', 'linear', 'hybrid'] | ||
segmentation_datasets = ['pascal', 'city'] | ||
segmentation_models = ['espnet', 'dicenet'] | ||
segmentation_loss_fns = ['ce', 'bce'] | ||
|
||
|
||
# detection related details | ||
|
||
detection_datasets = ['coco', 'voc'] | ||
detection_models = ['espnet', 'dicenet'] | ||
detection_schedulers = ['poly', 'hybrid', 'clr', 'cosine'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
#============================================ | ||
__author__ = "Sachin Mehta" | ||
__license__ = "MIT" | ||
__maintainer__ = "Sachin Mehta" | ||
#============================================ |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
# ============================================ | ||
__author__ = "Sachin Mehta" | ||
__maintainer__ = "Sachin Mehta" | ||
# ============================================ | ||
|
||
import os | ||
import torch.utils.data | ||
import numpy as np | ||
from PIL import Image | ||
from pycocotools.coco import COCO | ||
from torchvision.transforms import Compose, RandomResizedCrop, RandomHorizontalFlip, ToTensor, Normalize, Resize | ||
from transforms.classification.data_transforms import MEAN, STD | ||
from torch.utils import data | ||
|
||
COCO_CLASS_LIST = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', | ||
'train', 'truck', 'boat', 'traffic light', 'fire', 'hydrant', | ||
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', | ||
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', | ||
'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', | ||
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', | ||
'kite', 'baseball bat', 'baseball glove', 'skateboard', | ||
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', | ||
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', | ||
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', | ||
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', | ||
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', | ||
'keyboard', 'cell phone', 'microwave oven', 'toaster', 'sink', | ||
'refrigerator', 'book', 'clock', 'vase', 'scissors', | ||
'teddy bear', 'hair drier', 'toothbrush' | ||
] | ||
|
||
|
||
class COCOClassification(data.Dataset): | ||
def __init__(self, root, split='train', year='2017', inp_size=224, scale=(0.2, 1.0), is_training=True): | ||
super(COCOClassification, self).__init__() | ||
ann_file = os.path.join(root, 'annotations/instances_{}{}.json'.format(split, year)) | ||
self.root = root | ||
self.img_dir = os.path.join(root, 'images/{}{}'.format(split, year)) | ||
self.coco = COCO(ann_file) | ||
self.ids = list(self.coco.imgs.keys()) | ||
self.cat2cat = dict() | ||
for cat in self.coco.cats.keys(): | ||
self.cat2cat[cat] = len(self.cat2cat) | ||
self.transform = self.transforms(inp_size=inp_size, inp_scale=scale, is_training=is_training) | ||
|
||
|
||
def transforms(self, inp_size, inp_scale, is_training): | ||
|
||
if is_training: | ||
return Compose( | ||
[ | ||
RandomResizedCrop(inp_size, scale=inp_scale), | ||
RandomHorizontalFlip(), | ||
ToTensor(), | ||
Normalize(mean=MEAN, std=STD) | ||
] | ||
) | ||
else: | ||
return Compose( | ||
[ | ||
Resize(size=(inp_size, inp_size)), | ||
ToTensor(), | ||
Normalize(mean=MEAN, std=STD) | ||
] | ||
) | ||
|
||
def __len__(self): | ||
return len(self.ids) | ||
|
||
def __getitem__(self, index): | ||
coco = self.coco | ||
img_id = self.ids[index] | ||
ann_ids = coco.getAnnIds(imgIds=img_id) | ||
target = coco.loadAnns(ann_ids) | ||
|
||
output = torch.zeros((3, len(COCO_CLASS_LIST)), dtype=torch.long) | ||
for obj in target: | ||
if obj['area'] < 32 * 32: | ||
output[0][self.cat2cat[obj['category_id']]] = 1 | ||
elif obj['area'] < 96 * 96: | ||
output[1][self.cat2cat[obj['category_id']]] = 1 | ||
else: | ||
output[2][self.cat2cat[obj['category_id']]] = 1 | ||
target = output | ||
|
||
path = coco.loadImgs(img_id)[0]['file_name'] | ||
img = Image.open(os.path.join(self.img_dir, path)).convert('RGB') | ||
if self.transform is not None: | ||
img = self.transform(img) | ||
|
||
return img, target |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
#============================================ | ||
__author__ = "Sachin Mehta" | ||
__maintainer__ = "Sachin Mehta" | ||
#============================================ | ||
import os | ||
import torch | ||
import torchvision.datasets as datasets | ||
from torchvision import transforms | ||
from transforms.classification.data_transforms import Lighting, normalize | ||
|
||
|
||
def train_transforms(inp_size, scale): | ||
return transforms.Compose([ | ||
transforms.RandomResizedCrop(inp_size, scale=scale), | ||
transforms.RandomHorizontalFlip(), | ||
transforms.ToTensor(), | ||
normalize, | ||
]) | ||
|
||
|
||
def val_transforms(inp_size): | ||
return transforms.Compose([ | ||
transforms.Resize(int(inp_size / 0.875)), | ||
transforms.CenterCrop(inp_size), | ||
transforms.ToTensor(), | ||
normalize, | ||
]) | ||
|
||
#helper function for the loading the training data | ||
def train_loader(args): | ||
traindir = os.path.join(args.data, 'train') | ||
train_loader = torch.utils.data.DataLoader( | ||
datasets.ImageFolder(traindir, train_transforms(args.inpSize, scale=args.scale)), | ||
batch_size=args.batch_size, shuffle=True, | ||
num_workers=args.workers, pin_memory=True) | ||
|
||
return train_loader | ||
|
||
|
||
#helper function for the loading the validation data | ||
def val_loader(args): | ||
valdir = os.path.join(args.data, 'val') | ||
val_loader = torch.utils.data.DataLoader( | ||
datasets.ImageFolder(valdir, val_transforms(args.inpSize)), | ||
batch_size=args.batch_size, shuffle=False, | ||
num_workers=args.workers, pin_memory=True) | ||
|
||
return val_loader | ||
|
||
# helped function for loading trianing and validation data | ||
def data_loaders(args): | ||
tr_loader = train_loader(args) | ||
vl_loader = val_loader(args) | ||
return tr_loader, vl_loader | ||
|
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
# from https://github.com/amdegroot/ssd.pytorch | ||
|
||
from transforms.detection.data_transforms import ConvertFromInts, PhotometricDistort, Expand, RandomSampleCrop, \ | ||
RandomFlipping, ToPercentCoords, Resize, SubtractMeans, ToTensor, Compose | ||
|
||
|
||
class TrainTransform: | ||
''' | ||
Transformation for training set | ||
''' | ||
def __init__(self, size): | ||
""" | ||
Args: | ||
size: the size the of final image. | ||
""" | ||
self.size = size | ||
self.augment = Compose([ | ||
ConvertFromInts(), | ||
PhotometricDistort(), | ||
Expand(), | ||
RandomSampleCrop(), | ||
RandomFlipping(), | ||
ToPercentCoords(), | ||
Resize(self.size), | ||
SubtractMeans(), | ||
ToTensor(), | ||
]) | ||
|
||
def __call__(self, img, boxes, labels): | ||
""" | ||
Args: | ||
img: the output of cv.imread in RGB layout. | ||
boxes: boundding boxes in the form of (x1, y1, x2, y2). | ||
labels: labels of boxes. | ||
""" | ||
return self.augment(img, boxes, labels) | ||
|
||
|
||
class ValTransform: | ||
''' | ||
Transformation for validation set | ||
''' | ||
|
||
def __init__(self, size): | ||
self.transform = Compose([ | ||
ToPercentCoords(), | ||
Resize(size), | ||
SubtractMeans(), | ||
ToTensor(), | ||
]) | ||
|
||
def __call__(self, image, boxes, labels): | ||
return self.transform(image, boxes, labels) | ||
|
||
|
||
class TestTransform: | ||
''' | ||
Transformation for test set | ||
''' | ||
|
||
def __init__(self, size): | ||
self.transform = Compose([ | ||
Resize(size), | ||
SubtractMeans(), | ||
ToTensor() | ||
]) | ||
|
||
def __call__(self, image): | ||
image, _, _ = self.transform(image) | ||
return image |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
# ============================================ | ||
__author__ = "Sachin Mehta" | ||
__maintainer__ = "Sachin Mehta" | ||
# ============================================ | ||
|
||
import os | ||
import torch.utils.data | ||
import numpy as np | ||
from PIL import Image | ||
from pycocotools.coco import COCO | ||
|
||
COCO_CLASS_LIST = ['__background__', | ||
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', | ||
'train', 'truck', 'boat', 'traffic light', 'fire', 'hydrant', | ||
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', | ||
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', | ||
'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', | ||
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', | ||
'kite', 'baseball bat', 'baseball glove', 'skateboard', | ||
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', | ||
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', | ||
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', | ||
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', | ||
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', | ||
'keyboard', 'cell phone', 'microwave oven', 'toaster', 'sink', | ||
'refrigerator', 'book', 'clock', 'vase', 'scissors', | ||
'teddy bear', 'hair drier', 'toothbrush' | ||
] | ||
|
||
class COCOObjectDetection(torch.utils.data.Dataset): | ||
|
||
def __init__(self, root_dir, transform=None, target_transform=None, is_training=True): | ||
super(COCOObjectDetection, self).__init__() | ||
if is_training: | ||
split = 'train' | ||
year = '2017' | ||
else: | ||
split = 'val' | ||
year = '2017' | ||
ann_file = os.path.join(root_dir, 'annotations/instances_{}{}.json'.format(split, year)) | ||
self.coco = COCO(ann_file) | ||
self.root_dir = root_dir | ||
self.img_dir = os.path.join(root_dir, 'images/{}{}'.format(split, year)) | ||
self.transform = transform | ||
self.target_transform = target_transform | ||
if is_training: | ||
#Remove image IDS that don't have annotations from training set | ||
self.ids = list(self.coco.imgToAnns.keys()) | ||
else: | ||
# use all images from Validation Set | ||
self.ids = list(self.coco.imgs.keys()) | ||
coco_categories = sorted(self.coco.getCatIds()) | ||
self.coco_id_to_contiguous_id = {coco_id: i + 1 for i, coco_id in enumerate(coco_categories)} | ||
self.contiguous_id_to_coco_id = {v: k for k, v in self.coco_id_to_contiguous_id.items()} | ||
self.CLASSES = COCO_CLASS_LIST | ||
|
||
def __getitem__(self, index): | ||
img_id = self.ids[index] | ||
boxes, labels = self._get_annotation(img_id) | ||
image = self._get_image(img_id) | ||
if self.transform: | ||
image, boxes, labels = self.transform(image, boxes, labels) | ||
if self.target_transform: | ||
boxes, labels = self.target_transform(boxes, labels) | ||
return image, boxes, labels | ||
|
||
def get_image(self, index): | ||
image_id = self.ids[index] | ||
image = self._get_image(image_id) | ||
if self.transform: | ||
image, _ = self.transform(image) | ||
return image | ||
|
||
def get_annotation(self, index): | ||
image_id = self.ids[index] | ||
return image_id, self._get_annotation(image_id) | ||
|
||
def __len__(self): | ||
return len(self.ids) | ||
|
||
def _get_annotation(self, image_id): | ||
ann_ids = self.coco.getAnnIds(imgIds=image_id) | ||
ann = self.coco.loadAnns(ann_ids) | ||
# filter crowd annotations | ||
ann = [obj for obj in ann if obj["iscrowd"] == 0] | ||
boxes = np.array([self._xywh2xyxy(obj["bbox"]) for obj in ann], np.float32).reshape((-1, 4)) | ||
labels = np.array([self.coco_id_to_contiguous_id[obj["category_id"]] for obj in ann], np.int64).reshape((-1,)) | ||
# remove invalid boxes | ||
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) | ||
boxes = boxes[keep] | ||
labels = labels[keep] | ||
return boxes, labels | ||
|
||
def _xywh2xyxy(self, box): | ||
x1, y1, w, h = box | ||
return [x1, y1, x1 + w, y1 + h] | ||
|
||
def _get_image(self, image_id): | ||
file_name = self.coco.loadImgs(image_id)[0]['file_name'] | ||
image_file = os.path.join(self.img_dir, file_name) | ||
image = Image.open(image_file).convert("RGB") | ||
image = np.array(image) | ||
return image |
Oops, something went wrong.