1-install :
git clone https://github.com/saeed5959/CellCounter
pip install -r requirements.txt
2-RBC :
python3 main.py --mode rbc_count --img_path ./test_data/RBC/1.jpg
2-WBC classify infer :
python3 main.py --mode wbc_classify_infer --img_path ./test_data/WBC/classify/basophil.jpg --model_path ./model.pth
2-WBC classify train :
python3 main.py --mode wbc_classify_train --dataset_file ./dataset_file.txt --model_path ./model.pth
2-WBC segmentation :
python3 main.py --mode wbc_segment --img_path ./test_data/WBC/segment/main_image.jpg
1-red blood cell :
1- counting the numbers of RBC RESULT : 99.25% in counting
2- finding the radius of RBC RESULT : mean = 99% and variance = 90%
3- dataset : 322 images that averagely any image has 1000 RBC
2-white blood cell :
1- counting the numbers of WBC RESULT : 100% in counting
2- classification of WBC RESULT : 92% in classification
3- dataset : 401 images that averagely any image has 3 WBC
for medicl application , blood cells have a huge information about the diseases . so we can after taking a picture of these cells and processing and counting how many of these cells exist in the blood then we can detect a special desease