forked from PolusAI/argolid
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
133 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
import unittest | ||
import io, pathlib, shutil, logging, sys | ||
import bfio | ||
import numpy as np | ||
import tensorstore as ts | ||
import argolid | ||
import ome_types | ||
|
||
TEST_DIR = pathlib.Path(__file__).with_name("data") | ||
|
||
logging.basicConfig( | ||
format="%(asctime)s - %(name)-8s - %(levelname)-8s - %(message)s", | ||
datefmt="%d-%b-%y %H:%M:%S", | ||
) | ||
logger = logging.getLogger("bfio.test") | ||
|
||
if "-v" in sys.argv: | ||
logger.setLevel(logging.INFO) | ||
|
||
def setUpModule(): | ||
"""Create images for testing""" | ||
TEST_DIR.mkdir(exist_ok=True) | ||
for ch in range(4): | ||
for r in range(3): | ||
for c in range(2): | ||
image_name = f"{TEST_DIR}/test_image_r{r}_c{c}_ch{ch}.ome.tiff" | ||
with bfio.BioWriter(image_name, backend="python", X=1024, Y=1024, C=1, Z=1, T=1) as bw: | ||
test_val = np.ones((1024,1024), dtype=np.uint16) | ||
# setting up test data for mean sampling | ||
if r==0 and c==0: | ||
test_val[0,0] = 8 | ||
test_val[0,1] = 9 | ||
test_val[1,0] = 7 | ||
test_val[1,1] = 14 | ||
# setting up test data for mode sampling | ||
if r==0 and c==1 and ch==1: | ||
test_val[0,0] = 8 | ||
test_val[0,1] = 8 | ||
test_val[1,0] = 9 | ||
test_val[1,1] = 9 | ||
|
||
bw[0:1024, 0:1024, 0, 0, 0] = test_val | ||
|
||
|
||
|
||
class TestSingleChannelVivPyramidFromImageCollection(unittest.TestCase): | ||
@classmethod | ||
def setUpClass(self): | ||
input_dir = f"{TEST_DIR}" | ||
file_pattern = "test_image_r{x:d+}_c{y:d+}_ch0.ome.tiff" | ||
output_dir = f"{TEST_DIR}" | ||
image_name = "single_channel_image_viv" | ||
self._image_name = image_name + ".zarr" | ||
pyr_gen = argolid.PyramidGenerartor() | ||
pyr_gen.set_log_level(4) | ||
pyr_gen.generate_from_image_collection(input_dir, file_pattern, image_name, output_dir, 512, "Viv") | ||
|
||
def test_omexml_metadata_exists(self): | ||
ome_xml_path = f"{TEST_DIR}/{self._image_name}/METADATA.ome.xml" | ||
assert pathlib.Path(ome_xml_path).is_file() == True | ||
|
||
|
||
def test_valid_omexml_metadata(self): | ||
ome_xml_path = f"{TEST_DIR}/{self._image_name}/METADATA.ome.xml" | ||
ome_metadata = ome_types.from_xml(ome_xml_path) | ||
assert len(ome_metadata.images) == 1 | ||
assert len(ome_metadata.images[0].pixels.channels) == 1 | ||
assert ome_metadata.images[0].pixels.type == ome_types.model.PixelType.UINT8 | ||
assert ome_metadata.images[0].pixels.size_x == 3072 | ||
assert ome_metadata.images[0].pixels.size_y == 2048 | ||
assert ome_metadata.images[0].pixels.size_z == 1 | ||
assert ome_metadata.images[0].pixels.size_c == 1 | ||
assert ome_metadata.images[0].pixels.size_t == 1 | ||
assert ome_metadata.images[0].pixels.dimension_order == ome_types.model.Pixels_DimensionOrder.XYZCT | ||
|
||
|
||
def test_num_pyramid_levels(self): | ||
for i in range(5): | ||
assert pathlib.Path(TEST_DIR.joinpath(f"{self._image_name}/data.zarr/0/{i}")).is_dir() == True | ||
|
||
|
||
class TestMultipleChannelVivPyramidFromImageCollection(unittest.TestCase): | ||
@classmethod | ||
def setUpClass(self): | ||
input_dir = f"{TEST_DIR}" | ||
file_pattern = "test_image_r{x:d+}_c{y:d+}_ch{c:d}.ome.tiff" | ||
output_dir = f"{TEST_DIR}" | ||
image_name = "multiple_channel_image_viv" | ||
self._image_name = image_name + ".zarr" | ||
pyr_gen = argolid.PyramidGenerartor() | ||
pyr_gen.set_log_level(4) | ||
pyr_gen.generate_from_image_collection(input_dir, file_pattern, image_name, output_dir, 1024, "Viv") | ||
|
||
def test_valid_omexml_metadata(self): | ||
ome_xml_path = f"{TEST_DIR}/{self._image_name}/METADATA.ome.xml" | ||
ome_metadata = ome_types.from_xml(ome_xml_path) | ||
assert len(ome_metadata.images) == 1 | ||
assert len(ome_metadata.images[0].pixels.channels) == 4 | ||
assert ome_metadata.images[0].pixels.type == ome_types.model.PixelType.UINT8 | ||
assert ome_metadata.images[0].pixels.size_x == 3072 | ||
assert ome_metadata.images[0].pixels.size_y == 2048 | ||
assert ome_metadata.images[0].pixels.size_z == 1 | ||
assert ome_metadata.images[0].pixels.size_c == 4 | ||
assert ome_metadata.images[0].pixels.size_t == 1 | ||
assert ome_metadata.images[0].pixels.dimension_order == ome_types.model.Pixels_DimensionOrder.XYZCT | ||
|
||
def test_num_pyramid_levels(self): | ||
for i in range(4): | ||
assert pathlib.Path(TEST_DIR.joinpath(f"{self._image_name}/data.zarr/0/{i}")).is_dir() == True | ||
|
||
|
||
def test_base_layer_data(self): | ||
dataset_future = ts.open({ 'driver':'zarr', | ||
'kvstore': | ||
{'driver':'file', | ||
'path':f'{TEST_DIR}/{self._image_name}/data.zarr/0/0' | ||
} | ||
}) | ||
dataset = dataset_future.result() | ||
assert dataset.shape == (1, 4, 1, 2048, 3072) | ||
# test Viv compatible Zarr is produced | ||
# test OmeXml metadata | ||
# num channels | ||
# test correct number of pyramid layers are produced | ||
# test single channel image | ||
# test multi channel image | ||
# test proper downsampling is done | ||
# mode_max, mode_min, mean | ||
# test channel specific downsampling | ||
|
||
# test Neuroglance compatible Zarr is produced | ||
|
||
# test Precomputed Neuroglancer is produced. |