-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
3 component advection diffusion reaction solver added to darcy advect…
…ion class and a new script LVL_3comp added
- Loading branch information
1 parent
b78941a
commit fcb9460
Showing
2 changed files
with
357 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,246 @@ | ||
################################################### | ||
## This is a part of Mupopp | ||
## Copyright Saswata Hier-Majumder, July, 2016 | ||
## Modified on August 2018 | ||
## This program solves an advection diffusion problem | ||
## with Darcy flow, using Dirichlet boundary conditions | ||
## for velocity and concentration | ||
## Modified by Joe Sun, February 2019 | ||
#################################################### | ||
|
||
from fenics import * | ||
from mshr import* | ||
import numpy, scipy, sys, math | ||
#import matplotlib.pyplot as plt | ||
#Add the path to Mupopp module to the code | ||
sys.path.insert(0, '../../modules/') | ||
from mupopp import * | ||
|
||
|
||
##################################################### | ||
parameters["std_out_all_processes"]=False | ||
#set_log_level(30) #Critical info only | ||
#################################### | ||
|
||
# Parameters for initializing the object | ||
Da0 = 100.0 | ||
Pe0 = 100.0 | ||
alpha0= 0.01 # beta = alpha0/phi | ||
phi0 = 0.01 | ||
beta=alpha0/phi0 | ||
Fe=0.01 | ||
cfl0 = 0.01 | ||
# Parameters for iteration | ||
T0 = 2.0 | ||
dt0 = 0.1 | ||
out_freq0 = 1 | ||
|
||
# Parameters for mesh | ||
mesh_density = 40 | ||
|
||
# Output files for quick visualisation | ||
|
||
file_name = "Da_%3.2f_Pe_%.1E_beta_%3.2f_Fe_%3.2f"%(Da0,Pe0,beta,Fe) | ||
output_dir = "output/" | ||
|
||
extension = "pvd" # "xdmf" or "pvd" | ||
|
||
velocity_out = File(output_dir + file_name + "_velocity." + extension, "compressed") | ||
pressure_out = File(output_dir + file_name + "_pressure." + extension, "compressed") | ||
c0_out = File(output_dir + file_name + "_concentration0." + extension, "compressed") | ||
c1_out = File(output_dir + file_name + "_concentration1." + extension, "compressed") | ||
c2_out = File(output_dir + file_name + "_concentration2." + extension, "compressed") | ||
initial_c0_out = File(output_dir + file_name + "_initial_c0." + extension, "compressed") | ||
initial_c1_out = File(output_dir + file_name + "_initial_c1." + extension, "compressed") | ||
|
||
# Output parameters | ||
def output_write(mesh_density,Da,phi,Pe,alpha,cfl,fname= output_dir + "/a_parameters.out"): | ||
"""This function saves the output of iterations""" | ||
file=open(fname,"a") | ||
file.write("####################################") | ||
file.write("\n") | ||
file.write("Mesh density: %g\n" %mesh_density) | ||
file.write("Da: %g\n" %Da0) | ||
file.write("phi: %g\n" %phi0) | ||
file.write("Pe: %g\n" %Pe0) | ||
file.write("alpha: %g\n" %alpha0) | ||
file.write("cfl: %g\n" %cfl0) | ||
file.write("####################################") | ||
file.close | ||
|
||
output_write(mesh_density,Da0,phi0,Pe0,alpha0,cfl0) | ||
|
||
#Define function for source term in Governing equations | ||
class SourceTerm(Expression): | ||
""" Creates an expression for the source term | ||
in the advection reaction equations. | ||
The source term consists of a series of | ||
sine waves. | ||
""" | ||
def __init__(self, mesh,element): | ||
self.mesh = mesh | ||
self.element=element | ||
def eval(self, values, x): | ||
g1=x[0]*0.0 | ||
for ii in range(0,20): | ||
g1+=0.1*np.abs(np.sin(ii*x[0]*np.pi)) | ||
|
||
g = (1.0-tanh(x[1]/0.01))*g1 | ||
values[0] = g | ||
def value_shape(self): | ||
return (1,) | ||
|
||
# Define function for BC | ||
class BoundarySource(Expression): | ||
def __init__(self, mesh,element): | ||
self.mesh = mesh | ||
self.element=element | ||
def eval_cell(self, values, x, ufl_cell): | ||
cell = Cell(self.mesh, ufl_cell.index) | ||
n = cell.normal(ufl_cell.local_facet) | ||
g1=x[0]*0.0 | ||
for ii in range(0,20): | ||
g1+=0.01*np.abs(np.sin(ii*x[0]*np.pi)) | ||
g = -g1 | ||
values[0] = g*n[0] | ||
values[1] = g*n[1] | ||
def value_shape(self): | ||
return (2,) | ||
|
||
|
||
############################ | ||
## Numerical solution | ||
############################ | ||
|
||
# Define the mesh | ||
xmin = 0.0 | ||
xmax = 4.0 | ||
ymin = 0.0 | ||
ymax = 1.0 | ||
domain = Rectangle(Point(xmin,ymin),Point(xmax,ymax)) | ||
mesh = generate_mesh(domain,mesh_density) | ||
#mesh = RectangleMesh(Point(xmin, ymin), Point(xmax, ymax), 100, 50) | ||
##################### | ||
|
||
# Mark facets | ||
## Define subdomain for flux calculation | ||
class Plane(SubDomain): | ||
def inside(self, x, on_boundary): | ||
return x[1] > ymax - DOLFIN_EPS | ||
facets = FacetFunction("size_t", mesh) | ||
Plane().mark(facets, 1) | ||
ds = Measure("ds")[facets] | ||
n = FacetNormal(mesh) | ||
#################### | ||
# Define essential boundary | ||
def top_bottom(x): | ||
return x[1] < DOLFIN_EPS or x[1] > ymax - DOLFIN_EPS | ||
def bottom(x): | ||
return x[1] < DOLFIN_EPS | ||
def top(x): | ||
return x[1] > ymax - DOLFIN_EPS | ||
|
||
# Sub domain for Periodic boundary condition | ||
class PeriodicBoundary(SubDomain): | ||
# Bottom boundary is "target domain" G | ||
def inside(self, x, on_boundary): | ||
return bool(near(x[0], xmin) and on_boundary) | ||
# Map right boundary (H) to left boundary (G) | ||
def map(self, x, y): | ||
if near(x[0], xmax): | ||
y[0] = x[0] - xmax | ||
y[1] = x[1] | ||
else: | ||
y[0] = -1000 | ||
y[1] = -1000 | ||
# Create periodic boundary condition | ||
pbc = PeriodicBoundary() | ||
|
||
############################ | ||
## Darcy velocity | ||
############################ | ||
# Create FunctionSpaces | ||
# Velocity | ||
V = VectorElement("Lagrange", mesh.ufl_cell(), 2) | ||
# Pressure | ||
Q = FiniteElement("Lagrange", mesh.ufl_cell(), 1) | ||
#Concentration | ||
Qc = FiniteElement("Lagrange",mesh.ufl_cell(), 1) | ||
# Make a mixed space | ||
W = dolfin.FunctionSpace(mesh, MixedElement([V,Q,Qc,Qc,Qc]), constrained_domain=pbc) | ||
X = FunctionSpace(mesh,"CG",1, constrained_domain=pbc) | ||
|
||
|
||
# Define boundary conditions | ||
G=BoundarySource(mesh,element=V) | ||
#bc1 = DirichletBC(W.sub(0), G, bottom) | ||
bc1 = DirichletBC(W.sub(0), Constant((0.0,0.1)), bottom) | ||
bc = [bc1] | ||
|
||
########################### | ||
## Create an object | ||
########################### | ||
darcy = DarcyAdvection(Da=Da0,phi=phi0,Pe=Pe0,alpha=alpha0,cfl=cfl0) | ||
|
||
# Define initial conditions | ||
sol_0 = Function(W) | ||
temp2 = Function(X) | ||
c01_temp=Expression("0.01",element=Q) #Fe | ||
temp2.interpolate(c01_temp) | ||
c01 = temp2 | ||
assign(sol_0.sub(3), c01) | ||
|
||
#c0_initial,c1_initial=c0.split() | ||
#initial_c0_out << c0_initial | ||
#initial_c1_out << c1_initial | ||
|
||
########################### | ||
## Solve for Darcy velocity | ||
########################### | ||
sol = Function(W) | ||
# Parameters for iteration | ||
T = T0 | ||
dt = dt0 | ||
t = dt | ||
flux=np.array([]) | ||
carbon=np.array([]) | ||
time_array=np.array([]) | ||
i = 1 | ||
out_freq = out_freq0 | ||
S=SourceTerm(mesh,element=Qc) | ||
|
||
while t - T < DOLFIN_EPS: | ||
# Update the concentration of component 0 | ||
a,L = darcy.advection_diffusion_three_component(W,mesh,sol_0,dt,f1=S,K=0.1) | ||
solve(a==L,sol,bc) | ||
sol_0 = sol | ||
u0,p0,c00,c01,c02 = sol.split() | ||
if i % out_freq == 0: | ||
u0.rename("velocity","") | ||
velocity_out << u0 | ||
p0.rename("pressure","") | ||
pressure_out << p0 | ||
c00.rename("[CO3]","") | ||
c0_out << c00 | ||
c01.rename("[Fe]","") | ||
c1_out << c01 | ||
c02.rename("[C]","") | ||
c2_out << c02 | ||
## Calculate flux | ||
flux1 = assemble(c00*phi0*dot(u0, n)*ds(1)) | ||
flux= np.append(flux,flux1) | ||
time_array=np.append(time_array,t) | ||
#calculate mass of carbon deposited | ||
mass1=assemble(c02*(1.0-phi0)*dx) | ||
carbon = np.append(carbon,mass1) | ||
#print "flux 1: ", flux_1 | ||
# Move to next interval and adjust boundary condition | ||
info("time t =%g\n" %t) | ||
info("iteration =%g\n" %i) | ||
#print 'iteration',i | ||
t += dt | ||
i += 1 | ||
flux_file=output_dir + file_name + "_flux.csv" | ||
np.savetxt(flux_file,(time_array,flux),delimiter=',') | ||
mass_file=output_dir + file_name + "_mass.csv" | ||
np.savetxt(mass_file,(time_array,carbon),delimiter=',') |