Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix] OpenAI Embedderにdimensions設定不可の場合の対応 #14

Merged
merged 3 commits into from
Apr 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions src/jmteb/embedders/openai_embedder.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ def __init__(self, model: str = "text-embedding-3-small", dim: int | None = None
self.client = OpenAI() # API key written in .env
assert model in MODEL_DIM.keys(), f"`model` must be one of {list(MODEL_DIM.keys())}!"
self.model = model
if not dim:
if not dim or model == "text-embedding-ada-002":
self.dim = MODEL_DIM[self.model]
else:
if dim > MODEL_DIM[self.model]:
Expand All @@ -43,13 +43,15 @@ def __init__(self, model: str = "text-embedding-3-small", dim: int | None = None
self.dim = dim

def encode(self, text: str | list[str]) -> np.ndarray:
kwargs = {"dimensions": self.dim} if self.model != "text-embedding-ada-002" else {}
# specifying `dimensions` is not allowed for "text-embedding-ada-002"
result = np.asarray(
[
data.embedding
for data in self.client.embeddings.create(
input=text,
model=self.model,
dimensions=self.dim,
**kwargs,
).data
]
)
Expand Down
20 changes: 19 additions & 1 deletion tests/embedders/test_openai.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,13 @@ class MockEmbedding:


class MockOpenAIClientEmbedding:
def create(input: str | list[str], model: str, dimensions: int):
def create(input: str | list[str], model: str, **kwargs):
if model == "text-embedding-ada-002":
assert "dimensions" not in kwargs
dimensions = OUTPUT_DIM
else:
assert "dimensions" in kwargs
dimensions = kwargs.get("dimensions")
if isinstance(input, str):
input = [input]
return MockData(data=[MockEmbedding(embedding=[0.1] * dimensions)] * len(input))
Expand Down Expand Up @@ -62,6 +68,18 @@ def test_model_dim(self):
assert OpenAIEmbedder(model="text-embedding-3-large").dim == 3072
assert OpenAIEmbedder(model="text-embedding-ada-002").dim == 1536

def test_ada_002_dim(self):
# check that no `dimensions` argument is set for model "text-embedding-ada-002"
# else an assertion error will be raised in MockOpenAIClientEmbedding
# and model "text-embedding-ada-002" has a fixed output dimension
embeddings = OpenAIEmbedder(model="text-embedding-ada-002", dim=2 * OUTPUT_DIM).encode("任意のテキスト")
assert isinstance(embeddings, np.ndarray)
assert embeddings.shape == (OUTPUT_DIM,)

embeddings = OpenAIEmbedder(model="text-embedding-ada-002", dim=OUTPUT_DIM // 2).encode("任意のテキスト")
assert isinstance(embeddings, np.ndarray)
assert embeddings.shape == (OUTPUT_DIM,)

def test_dim_over_max(self):
assert OpenAIEmbedder(dim=2 * OUTPUT_DIM).dim == OUTPUT_DIM

Expand Down
Loading