An external PySpark module that works like R's read.csv or Panda's read_csv, with automatic type inference and null value handling. Parses csv data into SparkSQL DataFrames. No installation required, simply include pyspark_csv.py via SparkContext.
Supports type inference by evaluating data within each column. In the case of column having multiple data types, pyspark-csv will assign the lowest common denominator type for that column. For example,
Name, Model, Size, Width, Dt
Jag, 63, 4, 4, '2014-12-23'
Pog, 7.0, 5, 5, '2014-12-23'
Peek, 68xp, 5, 5.5, ''
generates DataFrame with the following schema:
csv_file
|--Name: string
|--Model: string
|--Size: int
|--Width: double
|--Dt: timestamp
Required Python packages: pyspark, csv, dateutil
Assume we have the following context
sc = SparkContext
sqlCtx = SQLContext or HiveContext
First, distribute pyspark-csv.py to executors using SparkContext
import pyspark_csv as pycsv
sc.addPyFile('pyspark_csv.py')
Read csv data via SparkContext and convert it to DataFrame
plaintext_rdd = sc.textFile('hdfs://x.x.x.x/blah.csv')
dataframe = pycsv.csvToDataFrame(sqlCtx, plaintext_rdd)
By default, pyspark-csv parses the first line as column names. To supply your own column names
plaintext_rdd = sc.textFile('hdfs://x.x.x.x/blah.csv')
dataframe = pycsv.csvToDataFrame(sqlCtx, plaintext_rdd, columns=['Name','Model','Size','Width','Dt'])
To convert DataFrames to RDDs, call the .rdd method.
To change separator
plaintext_rdd = sc.textFile('hdfs://x.x.x.x/blah.csv')
datarame = pycsv.csvToDataFrame(sqlCtx, plaintext_rdd, sep=",")
Skipping date and time parsing can lead to significant performance gain on large datasets
plaintext_rdd = sc.textFile('hdfs://x.x.x.x/blah.csv')
dataframe = pycsv.csvToDataFrame(sqlCtx, plaintext_rdd, parseDate=False)
Currently, the following data types are supported:
- int
- double
- string
- date
- time
- datetime
It also recognises None, ?, NULL, and '' as null values
Contributors welcomed! Contact [email protected]