This is the GitHub repository for a series of three tutorial on implementing a simulation of Active Brownian Particles (ABP) in two dimensions. These tutorial were delivered as a part of the KITP ACTIVE20 virtual programme.
Rastko Sknepnek, University of Dundee, United Kingdom
Daniel Matoz-Fernandez, Northwestern University, USA
This tutorial consists of three sessions:
- https://online.kitp.ucsb.edu/online/active20/tutorial1/
- https://online.kitp.ucsb.edu/online/active20/tutorial2/
- https://online.kitp.ucsb.edu/online/active20/tutorial3/
In the first session, we cover the key components of a particle-based simulation. We then implement in Python a simple 2D simulation of self-propelled soft particles subject to polar alignment.
Accompanied course material can be found in Tutorials/Session_1
In this tutorial, we cover how to significantly improve performance of the ABP simulation we developed in Session 1 by implementing the computation-heavy parts of the code in C++. We also show how to use pybind11 library to expose the low-level C++ code to Python, without loosing the convenience of working with Python.
Accompanied course material can be found in Tutorials/Session_2
In the final tutorial, we cover basics of GPGPU programming and show how to further improve the performance of the code by utilising the immense computational power of modern GPUs.
Accompanied course material can be found in Tutorials/Session_3
Note: For this tutorial we recommend using Unix-like environment (e.g., Linux or Mac OS X). You will need to have git installed.
Open a terminal and lease clone the repository with
git clone [email protected]:sknepneklab/ABPTutorial.git
This command will create a local copy of the repository on your computer. It will be stored in a directory called ABPTutorial.
The ABPTutorial directory has the following structure:
Tutorial - Jupyter notebooks and slides for the tutorial
Python - Python modules that implement a fully-functional ABP simulation in Python (Session 1)
c++ - C++ and CUDA codes for Sessions 2 and 3
conda - an example of a working conda environment
We recommend using Anaconda and creating a ABP environment. An example of a suitable conda environment can be found in the conda directory (file: ABP.yml).
To create a conda environment with using provided yml file, from the ABPTutorial directory type:
conda env create --file conda/ABP.yml
If you encounter problems with using the provided yml file (some users have reported the "Solving environment: failed" error), you can always create a new conda environment, e.g. by typing:
conda create -n ABP python=3.7 numpy scipy matplotlib jupyter jupyterlab vtk pip
This should install all packages needed to run Session 1 of the Tutorial.
You can make sure that the environment was properly installed by typing:
conda activate ABP
In order to make the Python modules visible, please install the pymd module. From the ABPTutorial directory type:
pip install Python/
In order to test the installation, you can type
python -c 'from pymd.md import *; b = Box(10); print(b.xmax)'
If the pymd module has been properly installed, the output of the previous line should be 5.0.
Please see the README.md file in the c++ directory.
Please see the README.md file in the cuda directory.
We also recommend installing Paraview for visualisation.
Note: It is also possible to install Paraview via the conda-forge channel. However, this has not been tested and one may encounter a number of package dependency issues if trying to install Paraview in the ABP conda environment provided above.