Skip to content

Commit

Permalink
Added a slide
Browse files Browse the repository at this point in the history
  • Loading branch information
bcaffo committed Aug 6, 2024
1 parent 44c0bb9 commit 7b44dd7
Show file tree
Hide file tree
Showing 2 changed files with 2 additions and 226 deletions.
1 change: 1 addition & 0 deletions slides/ds4ph/29_convolutions.ipynb

Large diffs are not rendered by default.

227 changes: 1 addition & 226 deletions slides/ds4ph/slide_convert.ipynb
Original file line number Diff line number Diff line change
@@ -1,226 +1 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'rajas'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"Input \u001b[0;32mIn [1]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mrajas\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m embeddings \u001b[38;5;28;01mas\u001b[39;00m eb\n",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'rajas'"
]
}
],
"source": [
"from rajas import embeddings as eb"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"eb.embed_audio('02_github.ipynb')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Default conversion\n",
"\n",
"```\n",
"02 converted with `jupyter nbconvert 02_github.ipynb --to slides --no-input`\n",
"```\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Conversion with different theme\n",
"\n",
"```\n",
"jupyter nbconvert 10_sqlite.ipynb --to slides --SlidesExporter.reveal_theme=solarized\n",
"```\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[NbConvertApp] Converting notebook 22_linear_separable.ipynb to slides\n",
"[NbConvertApp] Writing 602828 bytes to 22_linear_separable.slides.html\n"
]
}
],
"source": [
"!jupyter nbconvert 22_linear_separable.ipynb --to slides --SlidesExporter.reveal_theme=solarized"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[NbConvertApp] Converting notebook 23_linear_separable_smf.ipynb to slides\n",
"[NbConvertApp] Writing 590645 bytes to 23_linear_separable_smf.slides.html\n"
]
}
],
"source": [
"!jupyter nbconvert 23_linear_separable_smf.ipynb --to slides --SlidesExporter.reveal_theme=solarized"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[NbConvertApp] Converting notebook 24_regression_examples.ipynb to slides\n",
"[NbConvertApp] Writing 599589 bytes to 24_regression_examples.slides.html\n"
]
}
],
"source": [
"!jupyter nbconvert 24_regression_examples.ipynb --to slides --SlidesExporter.reveal_theme=solarized"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[NbConvertApp] Converting notebook 25_regression_interpretation.ipynb to slides\n",
"[NbConvertApp] Writing 668277 bytes to 25_regression_interpretation.slides.html\n"
]
}
],
"source": [
"!jupyter nbconvert 25_regression_interpretation.ipynb --to slides --SlidesExporter.reveal_theme=solarized"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[NbConvertApp] Converting notebook 26_nns.ipynb to slides\n",
"[NbConvertApp] Writing 691244 bytes to 26_nns.slides.html\n"
]
}
],
"source": [
"!jupyter nbconvert 26_nns.ipynb --to slides --SlidesExporter.reveal_theme=solarized "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[NbConvertApp] Converting notebook 27_basic_regression_pytorch.ipynb to slides\n",
"[NbConvertApp] Writing 640623 bytes to 27_basic_regression_pytorch.slides.html\n"
]
}
],
"source": [
"!jupyter nbconvert 27_basic_regression_pytorch.ipynb --to slides --SlidesExporter.reveal_theme=solarized "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[NbConvertApp] Converting notebook 28_logistic_regression_pytorch.ipynb to slides\n",
"[NbConvertApp] Writing 613760 bytes to 28_logistic_regression_pytorch.slides.html\n"
]
}
],
"source": [
"!jupyter nbconvert 28_logistic_regression_pytorch.ipynb --to slides --SlidesExporter.reveal_theme=solarized "
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[NbConvertApp] Converting notebook streamlit.ipynb to slides\n",
"[NbConvertApp] Writing 583921 bytes to streamlit.slides.html\n"
]
}
],
"source": [
"!jupyter nbconvert streamlit.ipynb --to slides --SlidesExporter.reveal_theme=solarized "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:.conda-ds4bio]",
"language": "python",
"name": "conda-env-.conda-ds4bio-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
},
"vscode": {
"interpreter": {
"hash": "79f87720972903b6188d40b03afb0115543bf63f5f0af29aadb196967754f61a"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"psneWwGCyMOG","outputId":"3cbfeb59-a960-4929-93e0-9f9e4f5cbf2c"},"outputs":[{"ename":"ModuleNotFoundError","evalue":"No module named 'rajas'","output_type":"error","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)","Input \u001b[0;32mIn [1]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mrajas\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m embeddings \u001b[38;5;28;01mas\u001b[39;00m eb\n","\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'rajas'"]}],"source":["from rajas import embeddings as eb"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lnbzGQamyMOJ"},"outputs":[],"source":["eb.embed_audio('02_github.ipynb')"]},{"cell_type":"markdown","metadata":{"id":"ZqGmf_LyyMOJ"},"source":["Default conversion\n","\n","```\n","02 converted with `jupyter nbconvert 02_github.ipynb --to slides --no-input`\n","```\n"]},{"cell_type":"markdown","metadata":{"id":"41KLFjqtyMOL"},"source":["Conversion with different theme\n","\n","```\n","jupyter nbconvert 10_sqlite.ipynb --to slides --SlidesExporter.reveal_theme=solarized\n","```\n"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"VB3BK2W_yMOL","outputId":"54357ecd-2fbb-4236-8b35-55b315b68ef8"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook 22_linear_separable.ipynb to slides\n","[NbConvertApp] Writing 602828 bytes to 22_linear_separable.slides.html\n"]}],"source":["!jupyter nbconvert 22_linear_separable.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1qp1Sp_GyMOM","outputId":"c7cd8bd0-7206-4cb8-8332-9f5600ac272a"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook 23_linear_separable_smf.ipynb to slides\n","[NbConvertApp] Writing 590645 bytes to 23_linear_separable_smf.slides.html\n"]}],"source":["!jupyter nbconvert 23_linear_separable_smf.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XBCCGUAdyMOM","outputId":"2ea98c82-203b-4a3d-df8a-4ec42409cb11"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook 24_regression_examples.ipynb to slides\n","[NbConvertApp] Writing 599589 bytes to 24_regression_examples.slides.html\n"]}],"source":["!jupyter nbconvert 24_regression_examples.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"FXb9mB6kyMON","outputId":"617e3028-26e2-41e8-a1a2-28469f53514b"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook 25_regression_interpretation.ipynb to slides\n","[NbConvertApp] Writing 668277 bytes to 25_regression_interpretation.slides.html\n"]}],"source":["!jupyter nbconvert 25_regression_interpretation.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KO5mLou9yMON","outputId":"461727d6-eaf7-4024-de17-5de90d03bfca"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook 26_nns.ipynb to slides\n","[NbConvertApp] Writing 691244 bytes to 26_nns.slides.html\n"]}],"source":["!jupyter nbconvert 26_nns.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"U_NQTXITyMON","outputId":"c18ca5a2-df36-43fc-ed8a-88efa4aa820d"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook 27_basic_regression_pytorch.ipynb to slides\n","[NbConvertApp] Writing 640623 bytes to 27_basic_regression_pytorch.slides.html\n"]}],"source":["!jupyter nbconvert 27_basic_regression_pytorch.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"2sA9zUXsyMOO","outputId":"3d5204ea-f8a6-44e3-b75c-70468c5421df"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook 28_logistic_regression_pytorch.ipynb to slides\n","[NbConvertApp] Writing 613760 bytes to 28_logistic_regression_pytorch.slides.html\n"]}],"source":["!jupyter nbconvert 28_logistic_regression_pytorch.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"T16hwmU8yMOO","outputId":"9adffa28-e6c8-48d7-93c8-6a98f4050f6e"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook streamlit.ipynb to slides\n","[NbConvertApp] Writing 583921 bytes to streamlit.slides.html\n"]}],"source":["!jupyter nbconvert streamlit.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","source":["!jupyter nbconvert streamlit.ipynb --to slides --SlidesExporter.reveal_theme=solarized"],"metadata":{"id":"W6Gfg92jyPRy"},"execution_count":null,"outputs":[]}],"metadata":{"kernelspec":{"display_name":"Python [conda env:.conda-ds4bio]","language":"python","name":"conda-env-.conda-ds4bio-py"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.10.4"},"vscode":{"interpreter":{"hash":"79f87720972903b6188d40b03afb0115543bf63f5f0af29aadb196967754f61a"}},"colab":{"provenance":[]}},"nbformat":4,"nbformat_minor":0}

0 comments on commit 7b44dd7

Please sign in to comment.