-
Notifications
You must be signed in to change notification settings - Fork 40
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
2 additions
and
226 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,226 +1 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"ename": "ModuleNotFoundError", | ||
"evalue": "No module named 'rajas'", | ||
"output_type": "error", | ||
"traceback": [ | ||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | ||
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", | ||
"Input \u001b[0;32mIn [1]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mrajas\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m embeddings \u001b[38;5;28;01mas\u001b[39;00m eb\n", | ||
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'rajas'" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"from rajas import embeddings as eb" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 26, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"eb.embed_audio('02_github.ipynb')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Default conversion\n", | ||
"\n", | ||
"```\n", | ||
"02 converted with `jupyter nbconvert 02_github.ipynb --to slides --no-input`\n", | ||
"```\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Conversion with different theme\n", | ||
"\n", | ||
"```\n", | ||
"jupyter nbconvert 10_sqlite.ipynb --to slides --SlidesExporter.reveal_theme=solarized\n", | ||
"```\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[NbConvertApp] Converting notebook 22_linear_separable.ipynb to slides\n", | ||
"[NbConvertApp] Writing 602828 bytes to 22_linear_separable.slides.html\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"!jupyter nbconvert 22_linear_separable.ipynb --to slides --SlidesExporter.reveal_theme=solarized" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[NbConvertApp] Converting notebook 23_linear_separable_smf.ipynb to slides\n", | ||
"[NbConvertApp] Writing 590645 bytes to 23_linear_separable_smf.slides.html\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"!jupyter nbconvert 23_linear_separable_smf.ipynb --to slides --SlidesExporter.reveal_theme=solarized" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[NbConvertApp] Converting notebook 24_regression_examples.ipynb to slides\n", | ||
"[NbConvertApp] Writing 599589 bytes to 24_regression_examples.slides.html\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"!jupyter nbconvert 24_regression_examples.ipynb --to slides --SlidesExporter.reveal_theme=solarized" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[NbConvertApp] Converting notebook 25_regression_interpretation.ipynb to slides\n", | ||
"[NbConvertApp] Writing 668277 bytes to 25_regression_interpretation.slides.html\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"!jupyter nbconvert 25_regression_interpretation.ipynb --to slides --SlidesExporter.reveal_theme=solarized" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[NbConvertApp] Converting notebook 26_nns.ipynb to slides\n", | ||
"[NbConvertApp] Writing 691244 bytes to 26_nns.slides.html\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"!jupyter nbconvert 26_nns.ipynb --to slides --SlidesExporter.reveal_theme=solarized " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[NbConvertApp] Converting notebook 27_basic_regression_pytorch.ipynb to slides\n", | ||
"[NbConvertApp] Writing 640623 bytes to 27_basic_regression_pytorch.slides.html\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"!jupyter nbconvert 27_basic_regression_pytorch.ipynb --to slides --SlidesExporter.reveal_theme=solarized " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[NbConvertApp] Converting notebook 28_logistic_regression_pytorch.ipynb to slides\n", | ||
"[NbConvertApp] Writing 613760 bytes to 28_logistic_regression_pytorch.slides.html\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"!jupyter nbconvert 28_logistic_regression_pytorch.ipynb --to slides --SlidesExporter.reveal_theme=solarized " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[NbConvertApp] Converting notebook streamlit.ipynb to slides\n", | ||
"[NbConvertApp] Writing 583921 bytes to streamlit.slides.html\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"!jupyter nbconvert streamlit.ipynb --to slides --SlidesExporter.reveal_theme=solarized " | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python [conda env:.conda-ds4bio]", | ||
"language": "python", | ||
"name": "conda-env-.conda-ds4bio-py" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.4" | ||
}, | ||
"vscode": { | ||
"interpreter": { | ||
"hash": "79f87720972903b6188d40b03afb0115543bf63f5f0af29aadb196967754f61a" | ||
} | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} | ||
{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"psneWwGCyMOG","outputId":"3cbfeb59-a960-4929-93e0-9f9e4f5cbf2c"},"outputs":[{"ename":"ModuleNotFoundError","evalue":"No module named 'rajas'","output_type":"error","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)","Input \u001b[0;32mIn [1]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mrajas\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m embeddings \u001b[38;5;28;01mas\u001b[39;00m eb\n","\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'rajas'"]}],"source":["from rajas import embeddings as eb"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lnbzGQamyMOJ"},"outputs":[],"source":["eb.embed_audio('02_github.ipynb')"]},{"cell_type":"markdown","metadata":{"id":"ZqGmf_LyyMOJ"},"source":["Default conversion\n","\n","```\n","02 converted with `jupyter nbconvert 02_github.ipynb --to slides --no-input`\n","```\n"]},{"cell_type":"markdown","metadata":{"id":"41KLFjqtyMOL"},"source":["Conversion with different theme\n","\n","```\n","jupyter nbconvert 10_sqlite.ipynb --to slides --SlidesExporter.reveal_theme=solarized\n","```\n"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"VB3BK2W_yMOL","outputId":"54357ecd-2fbb-4236-8b35-55b315b68ef8"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook 22_linear_separable.ipynb to slides\n","[NbConvertApp] Writing 602828 bytes to 22_linear_separable.slides.html\n"]}],"source":["!jupyter nbconvert 22_linear_separable.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1qp1Sp_GyMOM","outputId":"c7cd8bd0-7206-4cb8-8332-9f5600ac272a"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook 23_linear_separable_smf.ipynb to slides\n","[NbConvertApp] Writing 590645 bytes to 23_linear_separable_smf.slides.html\n"]}],"source":["!jupyter nbconvert 23_linear_separable_smf.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XBCCGUAdyMOM","outputId":"2ea98c82-203b-4a3d-df8a-4ec42409cb11"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook 24_regression_examples.ipynb to slides\n","[NbConvertApp] Writing 599589 bytes to 24_regression_examples.slides.html\n"]}],"source":["!jupyter nbconvert 24_regression_examples.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"FXb9mB6kyMON","outputId":"617e3028-26e2-41e8-a1a2-28469f53514b"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook 25_regression_interpretation.ipynb to slides\n","[NbConvertApp] Writing 668277 bytes to 25_regression_interpretation.slides.html\n"]}],"source":["!jupyter nbconvert 25_regression_interpretation.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KO5mLou9yMON","outputId":"461727d6-eaf7-4024-de17-5de90d03bfca"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook 26_nns.ipynb to slides\n","[NbConvertApp] Writing 691244 bytes to 26_nns.slides.html\n"]}],"source":["!jupyter nbconvert 26_nns.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"U_NQTXITyMON","outputId":"c18ca5a2-df36-43fc-ed8a-88efa4aa820d"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook 27_basic_regression_pytorch.ipynb to slides\n","[NbConvertApp] Writing 640623 bytes to 27_basic_regression_pytorch.slides.html\n"]}],"source":["!jupyter nbconvert 27_basic_regression_pytorch.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"2sA9zUXsyMOO","outputId":"3d5204ea-f8a6-44e3-b75c-70468c5421df"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook 28_logistic_regression_pytorch.ipynb to slides\n","[NbConvertApp] Writing 613760 bytes to 28_logistic_regression_pytorch.slides.html\n"]}],"source":["!jupyter nbconvert 28_logistic_regression_pytorch.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"T16hwmU8yMOO","outputId":"9adffa28-e6c8-48d7-93c8-6a98f4050f6e"},"outputs":[{"name":"stdout","output_type":"stream","text":["[NbConvertApp] Converting notebook streamlit.ipynb to slides\n","[NbConvertApp] Writing 583921 bytes to streamlit.slides.html\n"]}],"source":["!jupyter nbconvert streamlit.ipynb --to slides --SlidesExporter.reveal_theme=solarized"]},{"cell_type":"code","source":["!jupyter nbconvert streamlit.ipynb --to slides --SlidesExporter.reveal_theme=solarized"],"metadata":{"id":"W6Gfg92jyPRy"},"execution_count":null,"outputs":[]}],"metadata":{"kernelspec":{"display_name":"Python [conda env:.conda-ds4bio]","language":"python","name":"conda-env-.conda-ds4bio-py"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.10.4"},"vscode":{"interpreter":{"hash":"79f87720972903b6188d40b03afb0115543bf63f5f0af29aadb196967754f61a"}},"colab":{"provenance":[]}},"nbformat":4,"nbformat_minor":0} |