-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapi.py
222 lines (167 loc) · 7.83 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Created by happygirlzt
# -*- coding: utf-8 -*-
import sys
sys.path.append('/media/DATA/tingzhang-data/sa4se/scripts')
from utils import *
from sklearn.model_selection import train_test_split
import argparse
import pprint
import math
from transformers import AdamW
from ignite.engine import Engine, Events
from ignite.metrics import Accuracy, Loss, RunningAverage, Precision, Recall
from ignite.handlers import Checkpoint, DiskSaver, EarlyStopping
from ignite.contrib.handlers import ProgressBar
import logging
logging.basicConfig(level=logging.ERROR)
## Read model name and project name
parser = argparse.ArgumentParser(description='Choose the models.')
parser.add_argument('-m', '--model_num', default=0, type=int, nargs='?',
help='Enter an integer... 0-BERT, 1-XLNet, 2-RoBERTa, 3-ALBERT; default: 0')
parser.add_argument('-r', '--re_run', default=0, type=int, nargs='?',
help='Enter an integer... 0-re-run the saved model, 1-run new model; default: 0')
args = parser.parse_args()
#print(args.model_num)
#print(args.project_num)
m_num=args.model_num
rerun_flag=bool(args.re_run)
# Generate training, validation and test set
data_folder=Path('../data/')
cur_model=MODELS[m_num]
m_name=MODEL_NAMES[m_num]
print('Running model {} in API reviews'.format(m_name))
#### Read data
train_data=pd.read_pickle(data_folder/'api-train.pkl')
train_data['label']=train_data['label'].replace(-1, 2)
X_train=train_data['sentence']
y_train=train_data['label']
test_data=pd.read_pickle(data_folder/'api-test.pkl')
test_data['label']=test_data['label'].replace(-1, 2)
X_test=test_data['sentence']
y_test=test_data['label']
print('Read success!')
# pred_iterator=get_iterator(X_test, y_test, cur_model, False)
prediction_dataloader=get_dataloader(X_test, y_test, cur_model, False)
# print('Training set is {}\nValidation set is {}\nTest set is {}'.format(len(train_dataloader.dataset), len(validation_dataloader.dataset), len(prediction_dataloader.dataset)))
if rerun_flag:
X_train, X_validation, y_train, y_validation = train_test_split(X_train,
y_train,
test_size=0.05,
random_state=SEED,
stratify=y_train)
#train_dataloader=get_dataloader(X_train, y_train,cur_model,True)
#validation_dataloader=get_dataloader(X_validation, y_validation,cur_model,False)
train_iterator=get_iterator(X_train, y_train, cur_model, True)
valid_iterator=get_iterator(X_validation, y_validation, cur_model, False)
model = cur_model[0].from_pretrained(cur_model[2], num_labels=3)
model.cuda()
optimizer = AdamW(model.parameters(),
lr=LEARNING_RATE,
eps=EPS,
weight_decay=WEIGHT_DECAY)
#scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.8) # 5e-5 * 0.8 = 4e-5
def process_function(engine, batch):
model.train()
optimizer.zero_grad()
b_input_ids = batch.INPUT_IDS
b_input_mask = batch.ATTENTION_MASKS
b_labels = batch.LABEL
outputs = model(b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask,
labels=b_labels)
loss = outputs[0]
logits = outputs[1]
loss.backward()
optimizer.step()
#scheduler.step()
return loss.item()
def eval_function(engine, batch):
model.eval()
with torch.no_grad():
b_input_ids = batch.INPUT_IDS
b_input_mask = batch.ATTENTION_MASKS
b_labels = batch.LABEL
outputs = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)
#logits = outputs[0]
y_pred=outputs[0]
return y_pred, b_labels
trainer = Engine(process_function)
train_evaluator = Engine(eval_function)
validation_evaluator = Engine(eval_function)
#print('success!')
#### Metrics
RunningAverage(output_transform=lambda x: x).attach(trainer, 'loss')
def output_transform_fun(output):
y_pred, y = output
y_pred=y_pred.detach().cpu().numpy()
y=y.to('cpu').numpy()
y_pred=np.argmax(y_pred, axis=1).flatten()
return torch.from_numpy(y_pred), torch.from_numpy(y)
criterion = nn.CrossEntropyLoss()
### Training
#Accuracy(output_transform=output_transform_fun).attach(train_evaluator, 'accuracy')
Loss(criterion).attach(train_evaluator, 'cross-entropy')
#precision = Precision(output_transform=output_transform_fun, average=False)
#.detach().cpu().numpy()
#recall = Recall(output_transform=output_transform_fun, average=False)
#.detach().cpu().numpy()
#F1 = (precision * recall * 2) / (precision + recall)
#precision.attach(train_evaluator, 'precision')
#recall.attach(train_evaluator, 'recall')
#F1.attach(train_evaluator, 'F1')
### Validation
#Accuracy(output_transform=output_transform_fun).attach(validation_evaluator, 'accuracy')
Loss(criterion).attach(validation_evaluator, 'cross-entropy')
#precision.attach(validation_evaluator, 'precision')
#recall.attach(validation_evaluator, 'recall')
#F1.attach(validation_evaluator, 'F1')
#### Progress Bar
pbar = ProgressBar(persist=True, bar_format="")
pbar.attach(trainer, ['loss'])
def score_function_loss(engine):
val_loss = engine.state.metrics['cross-entropy']
return -val_loss
def score_function_f1(engine):
val_f1 = engine.state.metrics['F1']
if math.isnan(val_f1):
return -9999
return val_f1
handler = EarlyStopping(patience=2, score_function=score_function_loss, trainer=trainer)
validation_evaluator.add_event_handler(Events.COMPLETED, handler)
def log_training_results(engine):
train_evaluator.run(train_iterator)
metrics = train_evaluator.state.metrics
pbar.log_message(
"Training Results - Epoch: {} \nMetrics\n{}"
.format(engine.state.epoch, pprint.pformat(metrics)))
def log_validation_results(engine):
validation_evaluator.run(valid_iterator)
metrics = validation_evaluator.state.metrics
pbar.log_message(
"Validation Results - Epoch: {} \nMetrics\n{}"
.format(engine.state.epoch, pprint.pformat(metrics)))
pbar.n = pbar.last_print_n = 0
trainer.add_event_handler(Events.EPOCH_COMPLETED, log_training_results)
trainer.add_event_handler(Events.EPOCH_COMPLETED, log_validation_results)
#### Checkpoint
# to_save = {'{}_{}'.format(p_name, m_name): model,
# 'optimizer': optimizer,
# 'lr_scheduler': scheduler
# }
to_save={'api_{}'.format(m_name): model}
cp_handler = Checkpoint(to_save,
DiskSaver('../models/',
create_dir=True, require_empty=False),
filename_prefix='best',
score_function=score_function_loss,
score_name='val_loss')
validation_evaluator.add_event_handler(Events.COMPLETED, cp_handler)
#trainer.add_event_handler(Events.ITERATION_COMPLETED(every=1000), cp_handler)
# checkpointer = ModelCheckpoint('../models/', '{}'.format(p_name), create_dir=True, save_as_state_dict=True, require_empty=False)
# trainer.add_event_handler(Events.ITERATION_COMPLETED, TerminateOnNan())
trainer.run(train_iterator, max_epochs=4)
else:
print('Runing saved model...')
#run_on_test(cur_model, p_name, m_name, pred_iterator)
run_saved_model(prediction_dataloader, cur_model, 'api', m_name)