Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add C ndarray interface and refactor implementation for stats/base/dnanvariancepn #4838

Open
wants to merge 10 commits into
base: develop
Choose a base branch
from
169 changes: 141 additions & 28 deletions lib/node_modules/@stdlib/stats/base/dnanvariancepn/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ The use of the term `n-1` is commonly referred to as Bessel's correction. Note,
var dnanvariancepn = require( '@stdlib/stats/base/dnanvariancepn' );
```

#### dnanvariancepn( N, correction, x, stride )
#### dnanvariancepn( N, correction, x, strideX )

Computes the [variance][variance] of a double-precision floating-point strided array `x` ignoring `NaN` values and using a two-pass algorithm.

Expand All @@ -116,18 +116,16 @@ The function has the following parameters:
- **N**: number of indexed elements.
- **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **x**: input [`Float64Array`][@stdlib/array/float64].
- **stride**: index increment for `x`.
- **strideX**: stride length for `x`.

The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
var N = floor( x.length / 2 );
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ] ); // eslint-disable-line max-len

var v = dnanvariancepn( N, 1, x, 2 );
var v = dnanvariancepn( 5, 1, x, 2 );
// returns 6.25
```

Expand All @@ -137,18 +135,15 @@ Note that indexing is relative to the first index. To introduce an offset, use [

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var x0 = new Float64Array([2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN]);
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = dnanvariancepn( N, 1, x1, 2 );
var v = dnanvariancepn( 5, 1, x1, 2 );
// returns 6.25
```

#### dnanvariancepn.ndarray( N, correction, x, stride, offset )
#### dnanvariancepn.ndarray( N, correction, x, strideX, offsetX )

Computes the [variance][variance] of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm and alternative indexing semantics.

Expand All @@ -163,18 +158,16 @@ var v = dnanvariancepn.ndarray( x.length, 1, x, 1, 0 );

The function has the following additional parameters:

- **offset**: starting index for `x`.
- **offsetX**: starting index for `x`.

While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other element in `x` starting from the second element

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var N = floor( x.length / 2 );
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] ); // eslint-disable-line max-len

var v = dnanvariancepn.ndarray( N, 1, x, 2, 1 );
var v = dnanvariancepn.ndarray( 5, 1, x, 2, 1 );
// returns 6.25
```

Expand All @@ -200,18 +193,19 @@ var v = dnanvariancepn.ndarray( N, 1, x, 2, 1 );
<!-- eslint no-undef: "error" -->

```javascript
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var uniform = require( '@stdlib/random/base/uniform' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var dnanvariancepn = require( '@stdlib/stats/base/dnanvariancepn' );

var x;
var i;

x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = round( (randu()*100.0) - 50.0 );
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -50.0, 50.0 );
}

var x = filledarrayBy( 10, 'float64', rand );
0PrashantYadav0 marked this conversation as resolved.
Show resolved Hide resolved
console.log( x );

var v = dnanvariancepn( x.length, 1, x, 1 );
Expand All @@ -222,6 +216,125 @@ console.log( v );

<!-- /.examples -->

<!-- C interface documentation. -->

* * *

<section class="c">

## C APIs

<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->

<section class="intro">

</section>

<!-- /.intro -->

<!-- C usage documentation. -->

<section class="usage">

### Usage

```c
#include "stdlib/stats/base/dnanvariancepn.h"
```

#### stdlib_strided_dnanvariancepn( N, correction, \*X, strideX )

Computes the [variance][variance] of a double-precision floating-point strided array `x` ignoring `NaN` values and using a two-pass algorithm.

```c
const double x[] = { 1.0, -2.0, 0.0/0.0, 2.0 };

double v = stdlib_strided_dnanvariancepn( 4, 1.0, x, 1 );
// returns ~4.3333
```

The function accepts the following arguments:

- **N**: `[in] CBLAS_INT` number of indexed elements.
- **correction**: `[in] double` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **X**: `[in] double*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.

```c
double stdlib_strided_dnanvariancepn( const CBLAS_INT N, const double correction, const double *X, const CBLAS_INT strideX );
```

#### stdlib_strided_dnanvariancepn_ndarray( N, correction, \*X, strideX, offsetX )

Computes the [variance][variance] of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm and alternative indexing semantics.

```c
const double x[] = { 1.0, -2.0, 0.0/0.0, 2.0 };

double v = stdlib_strided_dnanvariancepn_ndarray( 4, 1.0, x, 1, 0 );
// returns ~4.3333
```

The function accepts the following arguments:

- **N**: `[in] CBLAS_INT` number of indexed elements.
- **correction**: `[in] double` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **X**: `[in] double*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
- **offsetX**: `[in] CBLAS_INT` starting index for `X`.

```c
double stdlib_strided_dnanvariancepn_ndarray( const CBLAS_INT N, const double correction, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
```

</section>

<!-- /.usage -->

<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="notes">

</section>

<!-- /.notes -->

<!-- C API usage examples. -->

<section class="examples">

### Examples

```c
#include "stdlib/stats/base/dnanvariancepn.h"
#include <stdio.h>

int main( void ) {
// Create a strided array:
const double x[] = { 1.0, 2.0, 0.0/0.0, 3.0, 0.0/0.0, 4.0, 5.0, 6.0, 0.0/0.0, 7.0, 8.0, 0.0/0.0 };

// Specify the number of elements:
const int N = 6;

// Specify the stride length:
const int strideX = 2;

// Compute the variance:
double v = stdlib_strided_dnanvariancepn( N, 1.0, x, strideX );

// Print the result:
printf( "sample variance: %lf\n", v );
}
```

</section>

<!-- /.examples -->

</section>

<!-- /.c -->

* * *

<section class="references">
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,16 +21,30 @@
// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/base/uniform' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float64Array = require( '@stdlib/array/float64' );
var pkg = require( './../package.json' ).name;
var dnanvariancepn = require( './../lib/dnanvariancepn.js' );


// FUNCTIONS //

/**
* Returns a random value or `NaN`.
*
* @private
* @returns {number} random number or `NaN`
*/
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -10.0, 10.0 );
}

/**
* Creates a benchmark function.
*
Expand All @@ -39,17 +53,7 @@ var dnanvariancepn = require( './../lib/dnanvariancepn.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float64Array( len );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
}
var x = filledarrayBy( len, 'float64', rand );
return benchmark;

function benchmark( b ) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,10 +22,11 @@

var resolve = require( 'path' ).resolve;
var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/base/uniform' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float64Array = require( '@stdlib/array/float64' );
var tryRequire = require( '@stdlib/utils/try-require' );
var pkg = require( './../package.json' ).name;

Expand All @@ -40,6 +41,19 @@ var opts = {

// FUNCTIONS //

/**
* Returns a random value or `NaN`.
*
* @private
* @returns {number} random number or `NaN`
*/
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -10.0, 10.0 );
}

/**
* Creates a benchmark function.
*
Expand All @@ -48,17 +62,7 @@ var opts = {
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float64Array( len );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
}
var x = filledarrayBy( len, 'float64', rand );
return benchmark;

function benchmark( b ) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,16 +21,30 @@
// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/base/uniform' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float64Array = require( '@stdlib/array/float64' );
var pkg = require( './../package.json' ).name;
var dnanvariancepn = require( './../lib/ndarray.js' );


// FUNCTIONS //

/**
* Returns a random value or `NaN`.
*
* @private
* @returns {number} random number or `NaN`
*/
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -10.0, 10.0 );
}

/**
* Creates a benchmark function.
*
Expand All @@ -39,17 +53,7 @@ var dnanvariancepn = require( './../lib/ndarray.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float64Array( len );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
}
var x = filledarrayBy( len, 'float64', rand );
return benchmark;

function benchmark( b ) {
Expand Down
Loading