-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added
named_arrays.SpectralDirectionalVectorArray
and `named_arrays…
….SpectralDirectionalMatrixArray` classes.
- Loading branch information
Showing
4 changed files
with
317 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
from __future__ import annotations | ||
from typing import Type | ||
|
||
import dataclasses | ||
import named_arrays as na | ||
|
||
__all__ = [ | ||
'AbstractSpectralDirectionalMatrixArray', | ||
'SpectralDirectionalMatrixArray', | ||
] | ||
|
||
|
||
@dataclasses.dataclass(eq=False, repr=False) | ||
class AbstractSpectralDirectionalMatrixArray( | ||
na.AbstractSpectralDirectionalVectorArray, | ||
): | ||
|
||
@property | ||
def type_abstract(self) -> Type[AbstractSpectralDirectionalMatrixArray]: | ||
return AbstractSpectralDirectionalMatrixArray | ||
|
||
@property | ||
def type_explicit(self) -> Type[SpectralDirectionalMatrixArray]: | ||
return SpectralDirectionalMatrixArray | ||
|
||
@property | ||
def type_vector(self) -> Type[na.SpectralDirectionalVectorArray]: | ||
return na.SpectralDirectionalVectorArray | ||
|
||
@property | ||
def determinant(self) -> na.ScalarLike: | ||
return NotImplementedError | ||
|
||
|
||
@dataclasses.dataclass(eq=False, repr=False) | ||
class SpectralDirectionalMatrixArray( | ||
na.SpectralDirectionalVectorArray, | ||
AbstractSpectralDirectionalMatrixArray, | ||
na.AbstractExplicitMatrixArray, | ||
): | ||
pass |
189 changes: 189 additions & 0 deletions
189
named_arrays/_vectors/tests/test_vectors_spectral_directional.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
import pytest | ||
import numpy as np | ||
import astropy.units as u | ||
import named_arrays as na | ||
from ..cartesian.tests import test_vectors_cartesian | ||
|
||
_num_x = test_vectors_cartesian._num_x | ||
_num_y = test_vectors_cartesian._num_y | ||
_num_z = test_vectors_cartesian._num_z | ||
_num_distribution = test_vectors_cartesian._num_distribution | ||
|
||
|
||
def _spectral_directional_arrays() -> list[na.SpectralDirectionalVectorArray]: | ||
return [ | ||
na.SpectralDirectionalVectorArray( | ||
wavelength=500 * u.nm, | ||
direction=na.Cartesian2dVectorArray(1, 2) * u.mm, | ||
), | ||
na.SpectralDirectionalVectorArray( | ||
wavelength=na.linspace(400, 600, axis="y", num=_num_y) * u.nm, | ||
direction=na.Cartesian2dVectorLinearSpace(1, 2, axis="y", num=_num_y).explicit * u.mm, | ||
), | ||
] | ||
|
||
|
||
def _spectral_directional_arrays_2() -> list[na.SpectralDirectionalVectorArray]: | ||
return [ | ||
na.SpectralDirectionalVectorArray( | ||
wavelength=400 * u.nm, | ||
direction=na.Cartesian2dVectorArray(3, 4) * u.m, | ||
), | ||
na.SpectralDirectionalVectorArray( | ||
wavelength=na.NormalUncertainScalarArray(400 * u.nm, width=1 * u.nm), | ||
direction=na.Cartesian2dVectorArray( | ||
x=na.NormalUncertainScalarArray(3, width=1) * u.m, | ||
y=na.NormalUncertainScalarArray(4, width=1) * u.m, | ||
) | ||
) | ||
] | ||
|
||
|
||
def _spectral_directional_items() -> list[na.AbstractArray | dict[str, int | slice | na.AbstractArray]]: | ||
return [ | ||
dict(y=0), | ||
dict(y=slice(0, 1)), | ||
dict(y=na.ScalarArrayRange(0, 2, axis='y')), | ||
] | ||
|
||
|
||
class AbstractTestAbstractSpectralDirectionalVectorArray( | ||
test_vectors_cartesian.AbstractTestAbstractCartesianVectorArray, | ||
): | ||
|
||
@pytest.mark.parametrize( | ||
argnames='item', | ||
argvalues=_spectral_directional_items() | ||
) | ||
def test__getitem__( | ||
self, | ||
array: na.AbstractSpectralVectorArray, | ||
item: dict[str, int | slice | na.AbstractArray] | na.AbstractArray | ||
): | ||
super().test__getitem__(array=array, item=item) | ||
|
||
@pytest.mark.parametrize('array_2', _spectral_directional_arrays_2()) | ||
class TestUfuncBinary( | ||
test_vectors_cartesian.AbstractTestAbstractCartesianVectorArray.TestUfuncBinary | ||
): | ||
pass | ||
|
||
@pytest.mark.parametrize('array_2', _spectral_directional_arrays_2()) | ||
class TestMatmul( | ||
test_vectors_cartesian.AbstractTestAbstractCartesianVectorArray.TestMatmul, | ||
): | ||
pass | ||
|
||
class TestArrayFunctions( | ||
test_vectors_cartesian.AbstractTestAbstractCartesianVectorArray.TestArrayFunctions, | ||
): | ||
|
||
@pytest.mark.parametrize("array_2", _spectral_directional_arrays_2()) | ||
class TestAsArrayLikeFunctions( | ||
test_vectors_cartesian.AbstractTestAbstractCartesianVectorArray.TestArrayFunctions.TestAsArrayLikeFunctions, | ||
): | ||
pass | ||
|
||
@pytest.mark.parametrize( | ||
argnames='where', | ||
argvalues=[ | ||
np._NoValue, | ||
True, | ||
na.ScalarArray(True), | ||
] | ||
) | ||
class TestReductionFunctions( | ||
test_vectors_cartesian.AbstractTestAbstractCartesianVectorArray.TestArrayFunctions.TestReductionFunctions, | ||
): | ||
pass | ||
|
||
@pytest.mark.parametrize( | ||
argnames='q', | ||
argvalues=[ | ||
.25, | ||
25 * u.percent, | ||
na.ScalarLinearSpace(.25, .75, axis='q', num=3, endpoint=True), | ||
] | ||
) | ||
class TestPercentileLikeFunctions( | ||
test_vectors_cartesian.AbstractTestAbstractCartesianVectorArray.TestArrayFunctions | ||
.TestPercentileLikeFunctions, | ||
): | ||
pass | ||
|
||
class TestNamedArrayFunctions( | ||
test_vectors_cartesian.AbstractTestAbstractCartesianVectorArray.TestNamedArrayFunctions, | ||
): | ||
@pytest.mark.skip | ||
class TestPltPlotLikeFunctions( | ||
test_vectors_cartesian.AbstractTestAbstractCartesianVectorArray.TestNamedArrayFunctions | ||
.TestPltPlotLikeFunctions, | ||
): | ||
pass | ||
|
||
|
||
@pytest.mark.parametrize("array", _spectral_directional_arrays()) | ||
class TestSpectralDirectionalVectorArray( | ||
AbstractTestAbstractSpectralDirectionalVectorArray, | ||
test_vectors_cartesian.AbstractTestAbstractExplicitCartesianVectorArray, | ||
): | ||
@pytest.mark.parametrize( | ||
argnames="item", | ||
argvalues=[ | ||
dict(y=0), | ||
dict(y=slice(None)), | ||
], | ||
) | ||
@pytest.mark.parametrize( | ||
argnames="value", | ||
argvalues=[ | ||
700 * u.nm, | ||
] | ||
) | ||
def test__setitem__( | ||
self, | ||
array: na.ScalarArray, | ||
item: dict[str, int | slice | na.ScalarArray] | na.ScalarArray, | ||
value: float | na.ScalarArray | ||
): | ||
super().test__setitem__(array=array, item=item, value=value) | ||
|
||
|
||
class AbstractTestAbstractImplicitSpectralDirectionalVectorArray( | ||
AbstractTestAbstractSpectralDirectionalVectorArray, | ||
test_vectors_cartesian.AbstractTestAbstractImplicitCartesianVectorArray, | ||
): | ||
pass | ||
|
||
|
||
class AbstractTestAbstractParameterizedSpectralDirectionalVectorArray( | ||
AbstractTestAbstractImplicitSpectralDirectionalVectorArray, | ||
test_vectors_cartesian.AbstractTestAbstractParameterizedCartesianVectorArray, | ||
): | ||
pass | ||
|
||
|
||
class AbstractTestAbstractSpectralDirectionalVectorSpace( | ||
AbstractTestAbstractParameterizedSpectralDirectionalVectorArray, | ||
test_vectors_cartesian.AbstractTestAbstractCartesianVectorSpace, | ||
): | ||
pass | ||
|
||
|
||
def _spectral_directional_linear_spaces() -> list[na.SpectralDirectionalVectorLinearSpace]: | ||
return [ | ||
na.SpectralDirectionalVectorLinearSpace( | ||
start=400 * u.nm, | ||
stop=600 * u.nm, | ||
axis="y", | ||
num=_num_y, | ||
) | ||
] | ||
|
||
|
||
@pytest.mark.parametrize("array", _spectral_directional_linear_spaces()) | ||
class TestSpectralDirectionalVectorLinearSpace( | ||
AbstractTestAbstractSpectralDirectionalVectorSpace, | ||
test_vectors_cartesian.AbstractTestAbstractCartesianVectorLinearSpace, | ||
): | ||
pass |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
from __future__ import annotations | ||
from typing import Type, TypeVar | ||
from typing_extensions import Self | ||
import dataclasses | ||
import named_arrays as na | ||
|
||
__all__ = [ | ||
'AbstractSpectralDirectionalVectorArray', | ||
'SpectralDirectionalVectorArray', | ||
'AbstractImplicitSpectralDirectionalVectorArray', | ||
'AbstractParameterizedSpectralDirectionalVectorArray', | ||
'AbstractSpectralDirectionalVectorSpace', | ||
'SpectralDirectionalVectorLinearSpace', | ||
] | ||
|
||
DirectionT = TypeVar("DirectionT", bound=na.ArrayLike) | ||
WavelengthT = TypeVar("WavelengthT", bound=na.ScalarLike) | ||
|
||
|
||
@dataclasses.dataclass(eq=False, repr=False) | ||
class AbstractSpectralDirectionalVectorArray( | ||
na.AbstractDirectionalVectorArray, | ||
na.AbstractSpectralVectorArray, | ||
): | ||
|
||
@property | ||
def type_abstract(self) -> Type[na.AbstractArray]: | ||
return AbstractSpectralDirectionalVectorArray | ||
|
||
@property | ||
def type_explicit(self) -> Type[na.AbstractExplicitArray]: | ||
return SpectralDirectionalVectorArray | ||
|
||
@property | ||
def type_matrix(self) -> Type[na.SpectralDirectionalMatrixArray]: | ||
return na.SpectralDirectionalMatrixArray | ||
|
||
|
||
@dataclasses.dataclass(eq=False, repr=False) | ||
class SpectralDirectionalVectorArray( | ||
AbstractSpectralDirectionalVectorArray, | ||
na.DirectionalVectorArray[DirectionT], | ||
na.SpectralVectorArray[WavelengthT], | ||
): | ||
|
||
@classmethod | ||
def from_scalar( | ||
cls: Type[Self], | ||
scalar: na.AbstractScalar, | ||
like: None | na.AbstractExplicitVectorArray = None, | ||
) -> SpectralDirectionalVectorArray: | ||
return cls(wavelength=scalar, direction=scalar) | ||
|
||
|
||
@dataclasses.dataclass(eq=False, repr=False) | ||
class AbstractImplicitSpectralDirectionalVectorArray( | ||
AbstractSpectralDirectionalVectorArray, | ||
na.AbstractImplicitDirectionalVectorArray, | ||
na.AbstractImplicitSpectralVectorArray, | ||
): | ||
pass | ||
|
||
|
||
@dataclasses.dataclass(eq=False, repr=False) | ||
class AbstractParameterizedSpectralDirectionalVectorArray( | ||
AbstractImplicitSpectralDirectionalVectorArray, | ||
na.AbstractParameterizedVectorArray, | ||
): | ||
pass | ||
|
||
|
||
@dataclasses.dataclass(eq=False, repr=False) | ||
class AbstractSpectralDirectionalVectorSpace( | ||
AbstractParameterizedSpectralDirectionalVectorArray, | ||
na.AbstractVectorSpace, | ||
): | ||
pass | ||
|
||
|
||
@dataclasses.dataclass(eq=False, repr=False) | ||
class SpectralDirectionalVectorLinearSpace( | ||
AbstractSpectralDirectionalVectorSpace, | ||
na.AbstractVectorLinearSpace, | ||
): | ||
pass |