Skip to content

sun126/ADNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ADNet Implementation using Tensorflow

Requirements

1.python
2.tensorflow
3.numpy PIL

Test

python main.py

--use_gpu=1 \                           # use gpu or not  
--gpu_idx=0 \  
--gpu_mem=0.5 \                         # gpu memory usage  
--phase=test \  
--test_dir=/path/to/your/test/dir/ \  
--save_dir=/path/to/save/results/ \  

Train
put your dataset in ./data
python main.py

--use_gpu=1 \                           # use gpu or not  
--gpu_idx=0 \  
--gpu_mem=0.5 \                         # gpu memory usage 
--phase=train \  
--epoch=100 \                           # number of training epoches  
--batch_size=16 \  
--patch_size=48 \                       # size of training patches  
--start_lr=0.001 \                      # initial learning rate for adm  
--eval_every_epoch=20 \                 # evaluate and save checkpoints for every # epoches  
--checkpoint_dir=./checkpoint           # if it is not existed, automatically make dirs  
--sample_dir=./sample                   # dir for saving evaluation results during training

You can read more details in https://blog.csdn.net/sf_qw39/article/details/105161957
If you find any problem when running the code, please contact to me.

About

ADNet Implementation using Tensorflow

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages