forked from CEED/Laghos
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlaghost_rheology.cpp
627 lines (554 loc) · 35.8 KB
/
laghost_rheology.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
#include <fstream>
#include <sys/time.h>
#include <sys/resource.h>
#include <cmath>
#include "laghost_rheology.hpp"
namespace mfem
{
void Returnmapping (const int dim, Vector &comp_gf, Vector &s_gf, Vector &s_old_gf, Vector &p_gf, Vector &mat_gf, const Param ¶m, double &h_min, double &dt_old )
// Vector &rho, Vector &lambda, Vector &mu, Vector &tension_cutoff, Vector &cohesion0, Vector &cohesion1, Vector &pls0, Vector &pls1, Vector &friction_angle0, Vector &friction_angle1, Vector &dilation_angle0, Vector &dilation_angle1, Vector &plastic_viscosity, bool &viscoplastic, )
{
Vector rho = param.mat.rho;
Vector lambda = param.mat.lambda;
Vector mu = param.mat.mu;
Vector tension_cutoff = param.mat.tension_cutoff;
Vector cohesion0 = param.mat.cohesion0;
Vector cohesion1 = param.mat.cohesion1;
Vector friction_angle0 = param.mat.friction_angle0;
Vector friction_angle1 = param.mat.friction_angle1;
Vector dilation_angle0 = param.mat.dilation_angle0;
Vector dilation_angle1 = param.mat.dilation_angle1;
Vector pls0 = param.mat.pls0;
Vector pls1 = param.mat.pls1;
Vector plastic_viscosity = param.mat.plastic_viscosity;
bool viscoplastic = param.mat.viscoplastic;
switch(dim)
{
case 3:
{
DenseMatrix esig(3);
DenseMatrix esig_old(3);
DenseMatrix esig_inc(3);
DenseMatrix plastic_sig(3);
DenseMatrix plastic_str(3);
esig=0.0; plastic_sig=0.0; plastic_str=0.0;
double eig_sig_var[3], eig_sig_vec[9];
double sig1{0.0};
double sig3{0.0};
double syy{0.0}; // Syy is non-zero value in plane strain condition
double msig{0.0}; // mean stress
double evol{0.0}; // volumetric strain
double DEG2RAD{M_PI/180.0};
double depls{0.0}; // 2nd invariant of plastic strain
double fs{0.0};
double ft{0.0};
double fh{0.0};
double N_phi{0.0};
double st_N_phi{0.0};
double N_psi{0.0};
double beta{0.0};
double viscosity{0.0};
double relax{0.0};
// double relax_limit{1.0};
double dt_scaled{0.0};
double numerator = {0.0};
double denominator = {0.0};
double pls_old = {0.0}; // cumulative 2nd invariant of plastic strain
double p_slope = {0.0};
double fri_str = {0.0}; // strain_dependent friction angle
double dil_str = {0.0}; // strain_dependent dilation angle
double coh_str = {0.0}; // strain_dependent cohesion
double ten_cut = {0.0};
int mat{0};
int nsize{mat_gf.Size()};
int mat_num{lambda.Size()};
// bool viscoplastic = true;
// bool viscoplastic = false;
double pls0_c = {0.0};
double pls1_c = {0.0};
double rho_c = {0.0};
double lambda_c = {0.0};
double mu_c = {0.0};
double tension_cutoff_c = {0.0};
double cohesion0_c = {0.0};
double cohesion1_c = {0.0};
double friction_angle0_c ={0.0};
double friction_angle1_c ={0.0};
double dilation_angle0_c ={0.0};
double dilation_angle1_c ={0.0};
double plastic_viscosity_c ={0.0};
double pwave_speed ={0.0};
double time_scale ={1.0};
for( int i = 0; i < nsize; i++ )
{
esig=0.0; plastic_sig=0.0; plastic_str=0.0;
esig_old=0.0; esig_inc=0.0;
double eig_sig_var[3], eig_sig_vec[9];
// mat = mat_gf[i];
pls_old = p_gf[i];
if(pls_old < 0.0){pls_old =0.0; p_gf[i] = 0.0;}
pls0_c =0.0; pls1_c =0.0; rho_c = 0.0; lambda_c = 0.0; mu_c = 0.0; time_scale = 1.0;
tension_cutoff_c = 0.0; cohesion0_c = 0.0; cohesion1_c = 0.0; friction_angle0_c = 0.0; friction_angle1_c = 0.0;
dilation_angle0_c = 0.0; dilation_angle1_c = 0.0; plastic_viscosity_c = 0.0;
for( int ii = 0; ii < mat_num; ii++ )
{
pls0_c = pls0_c + comp_gf[i+nsize*ii]*pls0[ii];
pls1_c = pls1_c + comp_gf[i+nsize*ii]*pls1[ii];
rho_c = rho_c + comp_gf[i+nsize*ii]*rho[ii];
lambda_c = lambda_c + comp_gf[i+nsize*ii]*lambda[ii];
mu_c = mu_c + comp_gf[i+nsize*ii]*mu[ii];
tension_cutoff_c = tension_cutoff_c + comp_gf[i+nsize*ii]*tension_cutoff[ii];
cohesion0_c = cohesion0_c + comp_gf[i+nsize*ii]*cohesion0[ii];
cohesion1_c = cohesion1_c + comp_gf[i+nsize*ii]*cohesion1[ii];
friction_angle0_c = friction_angle0_c + comp_gf[i+nsize*ii]*friction_angle0[ii];
friction_angle1_c = friction_angle1_c + comp_gf[i+nsize*ii]*friction_angle1[ii];
dilation_angle0_c = dilation_angle0_c + comp_gf[i+nsize*ii]*dilation_angle0[ii];
dilation_angle1_c = dilation_angle1_c + comp_gf[i+nsize*ii]*dilation_angle1[ii];
// plastic_viscosity_c = plastic_viscosity_c + comp_gf[i+nsize*ii]*plastic_viscosity[ii];
}
// linear weakening
p_slope = (pls_old - pls0_c)/(pls1_c - pls0_c);
pwave_speed = sqrt((lambda_c + 2*mu_c)/rho_c);
if(h_min > 0){time_scale = h_min / pwave_speed;}
plastic_viscosity_c = time_scale * mu_c;
if(dim ==2)
{
// 2D in plane strain condition
// sxx, syy, szz, sxz are non zeros.
// sxy, syz are zero.
msig = (s_gf[i+nsize*0] + s_gf[i+nsize*1])*0.5;
evol = msig/(lambda_c+mu_c);
syy = evol * lambda_c;
esig(0,0) = s_gf[i+nsize*0]; esig(0,1) = 0.0; esig(0,2) = s_gf[i+nsize*2];
esig(1,0) = 0,0; esig(1,1) = syy; esig(1,2) = 0.0;
esig(2,0) = s_gf[i+nsize*2]; esig(2,1) = 0.0; esig(2,2) = s_gf[i+nsize*1];
// Caushy stress at previous time step
msig = (s_old_gf[i+nsize*0] + s_old_gf[i+nsize*1])*0.5;
evol = msig/(lambda_c+mu_c);
syy = evol * lambda_c;
esig_old(0,0) = s_old_gf[i+nsize*0]; esig_old(0,1) = 0.0; esig_old(0,2) = s_old_gf[i+nsize*2];
esig_old(1,0) = 0,0; esig_old(1,1) = syy; esig_old(1,2) = 0.0;
esig_old(2,0) = s_old_gf[i+nsize*2]; esig_old(2,1) = 0.0; esig_old(2,2) = s_old_gf[i+nsize*1];
}
else
{
esig(0,0) = s_gf[i+nsize*0]; esig(0,1) = s_gf[i+nsize*3]; esig(0,2) = s_gf[i+nsize*4];
esig(1,0) = s_gf[i+nsize*3]; esig(1,1) = s_gf[i+nsize*1]; esig(1,2) = s_gf[i+nsize*5];
esig(2,0) = s_gf[i+nsize*4]; esig(2,1) = s_gf[i+nsize*5]; esig(2,2) = s_gf[i+nsize*2];
// Caushy stress at previous time step
esig_old(0,0) = s_old_gf[i+nsize*0]; esig_old(0,1) = s_old_gf[i+nsize*3]; esig_old(0,2) = s_old_gf[i+nsize*4];
esig_old(1,0) = s_old_gf[i+nsize*3]; esig_old(1,1) = s_old_gf[i+nsize*1]; esig_old(1,2) = s_old_gf[i+nsize*5];
esig_old(2,0) = s_old_gf[i+nsize*4]; esig_old(2,1) = s_old_gf[i+nsize*5]; esig_old(2,2) = s_old_gf[i+nsize*2];
}
// Elastic stress increment
esig_inc(0,0) = esig(0,0) - esig_old(0,0); esig_inc(0,1) = esig(0,1) - esig_old(0,1); esig_inc(0,2) = esig(0,2) - esig_old(0,2);
esig_inc(1,0) = esig(1,0) - esig_old(1,0); esig_inc(1,1) = esig(1,1) - esig_old(1,1); esig_inc(1,2) = esig(1,2) - esig_old(1,2);
esig_inc(2,0) = esig(2,0) - esig_old(2,0); esig_inc(2,1) = esig(2,1) - esig_old(2,1); esig_inc(2,2) = esig(2,2) - esig_old(2,2);
esig.CalcEigenvalues(eig_sig_var, eig_sig_vec);
Vector sig_var(eig_sig_var, 3);
Vector sig_dir(eig_sig_vec, 3);
auto max_it = std::max_element(sig_var.begin(), sig_var.end()); // find iterator to max element
auto min_it = std::min_element(sig_var.begin(), sig_var.end()); // find iterator to min element
int max_index = std::distance(sig_var.begin(), max_it); // calculate index of max element
int min_index = std::distance(sig_var.begin(), min_it); // calculate index of min element
int itm_index = 0; // calculate index of intermediate element
if (max_index + min_index == 1) {itm_index = 2;}
else if(max_index + min_index == 2) {itm_index = 1;}
else {itm_index = 0;}
sig1 = sig_var[min_index]; // most compressive pincipal stress
sig3 = sig_var[max_index]; // least compressive pincipal stress
// linear strain weaking on cohesion, friction and dilation angles.
coh_str = cohesion0_c; fri_str = friction_angle0_c; dil_str = dilation_angle0_c;
if (pls_old < pls0_c) {
// no weakening yet
coh_str = cohesion0_c;
fri_str = friction_angle0_c;
dil_str = dilation_angle0_c;
}
else if (pls_old < pls1_c) {
// linear weakening
coh_str = cohesion0_c + p_slope * (cohesion1_c - cohesion0_c);
fri_str = friction_angle0_c + p_slope * (friction_angle1_c - friction_angle0_c);
dil_str = dilation_angle0_c + p_slope * (dilation_angle1_c - dilation_angle0_c);
}
else {
// saturated weakening
coh_str = cohesion1_c; fri_str = friction_angle1_c; dil_str = dilation_angle1_c;
}
N_phi = (1+sin(DEG2RAD*fri_str))/(1-sin(DEG2RAD*fri_str));
st_N_phi = cos(DEG2RAD*fri_str)/(1-sin(DEG2RAD*fri_str));
N_psi = -1*(1+sin(DEG2RAD*dil_str))/(1-sin(DEG2RAD*dil_str)); // partial_g/partial_sig3
if(tension_cutoff_c == 0)
{
ten_cut = coh_str/tan(DEG2RAD*fri_str);
// std::cout << "tension cutoff " << ten_cut << std::endl;
}
else{ten_cut = tension_cutoff_c;}
// shear failure function
fs = sig1 - N_phi*sig3 + 2*coh_str*st_N_phi;
// tension failure function
ft = sig3 - ten_cut;
// bisects the obtuse angle made by two yield function
fh = sig3 - ten_cut + (sqrt(N_phi*N_phi + 1.0)+ N_phi)*(sig1 - N_phi*ten_cut + 2*coh_str*st_N_phi);
depls = 0.0;
if(fs < 0 & fh < 0) // stress correction at shear failure
{
// Equations 28 and 30 from Choi et al. (2013; DynEarthSol2D: An efficient unstructured finite element method to study long-term tectonic deformation).
beta = fs;
beta = beta / (((lambda_c+2*mu_c)*1 - N_phi*lambda_c*1) + (lambda_c*N_psi - N_phi*(lambda_c+2*mu_c)*N_psi));
plastic_str(0,0) = (lambda_c + 2*mu_c + lambda_c*N_psi) * beta;
plastic_str(1,1) = (lambda_c + lambda_c*N_psi) * beta;
plastic_str(2,2) = (lambda_c + (lambda_c+2*mu_c)*N_psi) * beta;
// reduced form of 2nd invariant
if(dim ==2)
{
depls = std::fabs(beta) * std::sqrt((3 - 2*N_psi + 3*N_psi*N_psi) / 8);
// depls = std::fabs(alam) * std::sqrt((3 + 2*anpsi + 3*anpsi*anpsi) / 8);
}
else
{
depls = std::fabs(beta) * std::sqrt((7 - 4*N_psi + 7*N_psi*N_psi) / 18);
// depls = std::fabs(alam) * std::sqrt((7 + 4*anpsi + 7*anpsi*anpsi) / 18);
}
}
else if (ft > 0 & fh > 0) // stress correction at tension failure
{
beta = ft;
beta = beta/(lambda_c+2*mu_c);
plastic_str(0,0) = lambda_c * beta * 1;
plastic_str(1,1) = lambda_c * beta * 1;
plastic_str(2,2) = (lambda_c+2*mu_c) * beta * 1;
// reduced form of 2nd invariant
if(dim ==2)
{
depls = std::fabs(beta) * std::sqrt(3. / 8);
// depls = std::fabs(alam) * std::sqrt(3. / 8);
}
else
{
depls = std::fabs(beta) * std::sqrt(7. / 18);
// depls = std::fabs(alam) * std::sqrt(7. / 18);
}
// std::cout << i << ", tensile failure occures, ft = " << ft << ", plastic_str(0,0) = " << plastic_str(0,0) << ", plastic_str(1,1) = " << \
// plastic_str(1,1) << "plastic_str(2,2) = " << plastic_str(2,2) << ", depls = " << depls << std::endl;
}
// Rotating Principal axis to XYZ axis
plastic_sig(0,0) = ((sig_var[min_index]-plastic_str(0,0))*sig_dir[0+min_index*3]*sig_dir[0+min_index*3] + (sig_var[itm_index]-plastic_str(1,1))*sig_dir[0+itm_index*3]*sig_dir[0+itm_index*3] + (sig_var[max_index]-plastic_str(2,2))*sig_dir[0+max_index*3]*sig_dir[0+max_index*3]);
plastic_sig(0,1) = ((sig_var[min_index]-plastic_str(0,0))*sig_dir[0+min_index*3]*sig_dir[1+min_index*3] + (sig_var[itm_index]-plastic_str(1,1))*sig_dir[0+itm_index*3]*sig_dir[1+itm_index*3] + (sig_var[max_index]-plastic_str(2,2))*sig_dir[0+max_index*3]*sig_dir[1+max_index*3]);
plastic_sig(0,2) = ((sig_var[min_index]-plastic_str(0,0))*sig_dir[0+min_index*3]*sig_dir[2+min_index*3] + (sig_var[itm_index]-plastic_str(1,1))*sig_dir[0+itm_index*3]*sig_dir[2+itm_index*3] + (sig_var[max_index]-plastic_str(2,2))*sig_dir[0+max_index*3]*sig_dir[2+max_index*3]);
plastic_sig(1,0) = ((sig_var[min_index]-plastic_str(0,0))*sig_dir[1+min_index*3]*sig_dir[0+min_index*3] + (sig_var[itm_index]-plastic_str(1,1))*sig_dir[1+itm_index*3]*sig_dir[0+itm_index*3] + (sig_var[max_index]-plastic_str(2,2))*sig_dir[1+max_index*3]*sig_dir[0+max_index*3]);
plastic_sig(1,1) = ((sig_var[min_index]-plastic_str(0,0))*sig_dir[1+min_index*3]*sig_dir[1+min_index*3] + (sig_var[itm_index]-plastic_str(1,1))*sig_dir[1+itm_index*3]*sig_dir[1+itm_index*3] + (sig_var[max_index]-plastic_str(2,2))*sig_dir[1+max_index*3]*sig_dir[1+max_index*3]);
plastic_sig(1,2) = ((sig_var[min_index]-plastic_str(0,0))*sig_dir[1+min_index*3]*sig_dir[2+min_index*3] + (sig_var[itm_index]-plastic_str(1,1))*sig_dir[1+itm_index*3]*sig_dir[2+itm_index*3] + (sig_var[max_index]-plastic_str(2,2))*sig_dir[1+max_index*3]*sig_dir[2+max_index*3]);
plastic_sig(2,0) = ((sig_var[min_index]-plastic_str(0,0))*sig_dir[2+min_index*3]*sig_dir[0+min_index*3] + (sig_var[itm_index]-plastic_str(1,1))*sig_dir[2+itm_index*3]*sig_dir[0+itm_index*3] + (sig_var[max_index]-plastic_str(2,2))*sig_dir[2+max_index*3]*sig_dir[0+max_index*3]);
plastic_sig(2,1) = ((sig_var[min_index]-plastic_str(0,0))*sig_dir[2+min_index*3]*sig_dir[1+min_index*3] + (sig_var[itm_index]-plastic_str(1,1))*sig_dir[2+itm_index*3]*sig_dir[1+itm_index*3] + (sig_var[max_index]-plastic_str(2,2))*sig_dir[2+max_index*3]*sig_dir[1+max_index*3]);
plastic_sig(2,2) = ((sig_var[min_index]-plastic_str(0,0))*sig_dir[2+min_index*3]*sig_dir[2+min_index*3] + (sig_var[itm_index]-plastic_str(1,1))*sig_dir[2+itm_index*3]*sig_dir[2+itm_index*3] + (sig_var[max_index]-plastic_str(2,2))*sig_dir[2+max_index*3]*sig_dir[2+max_index*3]);
// Updating new stress to grid function
viscosity = plastic_viscosity_c;
// viscosity = 10000.0;
// viscosity = 0.0; // rate_independent
// viscosity = 1.0e+38; // elastic
relax = exp(-dt_old/viscosity);
numerator = fabs(1 - relax);
denominator= fabs(dt_old/viscosity);
dt_scaled = dt_old/viscosity;
// Based on L'Hôpital's rule, 0/0 become 1
// if((numerator > 1e-15) & (denominator > 1e-15)){relax_limit = (1 - relax)/(dt_old/viscosity);}
// std::cout
// if(viscosity > 1e+100){viscoplastic = false;}
if((fs < 0 & fh < 0) | (ft > 0 & fh > 0))
{
// if(i ==0){std::cout << fs <<","<< beta*1e6 << ","<< dt_old << "," << relax <<","<< relax_limit << std::endl;}
if(dim ==2)
{
if(viscoplastic)
{
// Closed-form algorithm for viscoplasticity from Computational Inelasticity on p. 218 (Simo and Hughes, 1998)
// s_gf[i+nsize*0]=esig_old(0,0)*relax + (1.0 - relax)*plastic_sig(0,0) + relax_limit*esig_inc(0,0);
// s_gf[i+nsize*2]=esig_old(0,2)*relax + (1.0 - relax)*plastic_sig(0,2) + relax_limit*esig_inc(0,2);
// s_gf[i+nsize*2]=esig_old(2,0)*relax + (1.0 - relax)*plastic_sig(2,0) + relax_limit*esig_inc(2,0);
// s_gf[i+nsize*1]=esig_old(2,2)*relax + (1.0 - relax)*plastic_sig(2,2) + relax_limit*esig_inc(2,2);
// Implicit backward Euler algorithm
s_gf[i+nsize*0]=((esig_old(0,0) + esig_inc(0,0)) + dt_scaled*plastic_sig(0,0))/(1.0+dt_scaled);
s_gf[i+nsize*2]=((esig_old(0,2) + esig_inc(0,2)) + dt_scaled*plastic_sig(0,2))/(1.0+dt_scaled);
s_gf[i+nsize*2]=((esig_old(2,0) + esig_inc(2,0)) + dt_scaled*plastic_sig(2,0))/(1.0+dt_scaled);
s_gf[i+nsize*1]=((esig_old(2,2) + esig_inc(2,2)) + dt_scaled*plastic_sig(2,2))/(1.0+dt_scaled);
}
else
{
s_gf[i+nsize*0]=plastic_sig(0,0); s_gf[i+nsize*2]=plastic_sig(0,2);
s_gf[i+nsize*2]=plastic_sig(2,0); s_gf[i+nsize*1]=plastic_sig(2,2);
}
}
else
{
if(viscoplastic)
{
// // Closed-form algorithm for viscoplasticity from Computational Inelasticity on p. 218 (Simo and Hughes, 1998)
// s_gf[i+nsize*0]=esig_old(0,0)*relax + (1.0 - relax)*plastic_sig(0,0) + relax_limit*esig_inc(0,0);
// s_gf[i+nsize*3]=esig_old(0,1)*relax + (1.0 - relax)*plastic_sig(0,1) + relax_limit*esig_inc(0,1);
// s_gf[i+nsize*4]=esig_old(0,2)*relax + (1.0 - relax)*plastic_sig(0,2) + relax_limit*esig_inc(0,2);
// s_gf[i+nsize*3]=esig_old(1,0)*relax + (1.0 - relax)*plastic_sig(1,0) + relax_limit*esig_inc(1,0);
// s_gf[i+nsize*1]=esig_old(1,1)*relax + (1.0 - relax)*plastic_sig(1,1) + relax_limit*esig_inc(1,1);
// s_gf[i+nsize*5]=esig_old(1,2)*relax + (1.0 - relax)*plastic_sig(1,2) + relax_limit*esig_inc(1,2);
// s_gf[i+nsize*4]=esig_old(2,0)*relax + (1.0 - relax)*plastic_sig(2,0) + relax_limit*esig_inc(2,0);
// s_gf[i+nsize*5]=esig_old(2,1)*relax + (1.0 - relax)*plastic_sig(2,1) + relax_limit*esig_inc(2,1);
// s_gf[i+nsize*2]=esig_old(2,2)*relax + (1.0 - relax)*plastic_sig(2,2) + relax_limit*esig_inc(2,2);
// Implicit backward Euler algorithm
s_gf[i+nsize*0]=((esig_old(0,0) + esig_inc(0,0)) + dt_scaled*plastic_sig(0,0))/(1.0+dt_scaled);
s_gf[i+nsize*3]=((esig_old(0,1) + esig_inc(0,1)) + dt_scaled*plastic_sig(0,1))/(1.0+dt_scaled);
s_gf[i+nsize*4]=((esig_old(0,2) + esig_inc(0,2)) + dt_scaled*plastic_sig(0,2))/(1.0+dt_scaled);
s_gf[i+nsize*3]=((esig_old(1,0) + esig_inc(1,0)) + dt_scaled*plastic_sig(1,0))/(1.0+dt_scaled);
s_gf[i+nsize*1]=((esig_old(1,1) + esig_inc(1,1)) + dt_scaled*plastic_sig(1,1))/(1.0+dt_scaled);
s_gf[i+nsize*5]=((esig_old(1,2) + esig_inc(1,2)) + dt_scaled*plastic_sig(1,2))/(1.0+dt_scaled);
s_gf[i+nsize*4]=((esig_old(2,0) + esig_inc(2,0)) + dt_scaled*plastic_sig(2,0))/(1.0+dt_scaled);
s_gf[i+nsize*5]=((esig_old(2,1) + esig_inc(2,1)) + dt_scaled*plastic_sig(2,1))/(1.0+dt_scaled);
s_gf[i+nsize*2]=((esig_old(2,2) + esig_inc(2,2)) + dt_scaled*plastic_sig(2,2))/(1.0+dt_scaled);
}
else
{
s_gf[i+nsize*0]=plastic_sig(0,0); s_gf[i+nsize*3]=plastic_sig(0,1); s_gf[i+nsize*4]=plastic_sig(0,2);
s_gf[i+nsize*3]=plastic_sig(1,0); s_gf[i+nsize*1]=plastic_sig(1,1); s_gf[i+nsize*5]=plastic_sig(1,2);
s_gf[i+nsize*4]=plastic_sig(2,0); s_gf[i+nsize*5]=plastic_sig(2,1); s_gf[i+nsize*2]=plastic_sig(2,2);
}
}
}
// Adding 2nd invariant of plastic strain increment
if(viscoplastic)
{
// depls = (1 - relax)*depls;
depls = dt_scaled*depls/(1.0+dt_scaled);
p_gf[i] += depls;
}
else
{
// p_gf[i] += depls;
p_gf[i] += std::fabs(depls);
}
}
break;
}
case 2:
{
DenseMatrix esig(2);
DenseMatrix esig_old(2);
DenseMatrix esig_inc(2);
DenseMatrix plastic_sig(2);
DenseMatrix plastic_str(2);
esig=0.0; plastic_sig=0.0; plastic_str=0.0;
double eig_sig_var[2], eig_sig_vec[4];
double sig1{0.0};
double sig3{0.0};
double syy{0.0}; // Syy is non-zero value in plane strain condition
double syy_old{0.0}; // Syy is non-zero value in plane strain condition
double msig{0.0}; // mean stress
double evol{0.0}; // volumetric strain
double DEG2RAD{M_PI/180.0};
double depls{0.0}; // 2nd invariant of plastic strain
double fs{0.0};
double ft{0.0};
double fh{0.0};
double N_phi{0.0};
double st_N_phi{0.0};
double N_psi{0.0};
double beta{0.0};
double viscosity{1.0};
double relax{0.0};
// double relax_limit{1.0};
double dt_scaled{0.0};
double numerator = {0.0};
double denominator = {0.0};
double pls_old = {0.0}; // cumulative 2nd invariant of plastic strain
double p_slope = {0.0};
double fri_str = {0.0}; // strain_dependent friction angle
double dil_str = {0.0}; // strain_dependent dilation angle
double coh_str = {0.0}; // strain_dependent cohesion
double ten_cut = {0.0};
int mat{0};
int nsize{mat_gf.Size()};
int mat_num{lambda.Size()};
// bool viscoplastic = true;
// bool viscoplastic = false;
double pls0_c = {0.0};
double pls1_c = {0.0};
double rho_c = {0.0};
double lambda_c = {0.0};
double mu_c = {0.0};
double tension_cutoff_c = {0.0};
double cohesion0_c = {0.0};
double cohesion1_c = {0.0};
double friction_angle0_c ={0.0};
double friction_angle1_c ={0.0};
double dilation_angle0_c ={0.0};
double dilation_angle1_c ={0.0};
double plastic_viscosity_c ={0.0};
double pwave_speed ={0.0};
double time_scale ={1.0};
for( int i = 0; i < nsize; i++ )
{
esig=0.0; plastic_sig=0.0; plastic_str=0.0;
esig_old=0.0; esig_inc=0.0;
// double eig_sig_var[2], eig_sig_vec[4];
Vector eig_sig_var(2), eig_sig_vec(4);
// mat = mat_gf[i];
pls_old = p_gf[i];
if(pls_old < 0.0){pls_old =0.0; p_gf[i] = 0.0;}
pls0_c =0.0; pls1_c =0.0; rho_c = 0.0; lambda_c = 0.0; mu_c = 0.0; time_scale = 1.0;
tension_cutoff_c = 0.0; cohesion0_c = 0.0; cohesion1_c = 0.0; friction_angle0_c = 0.0; friction_angle1_c = 0.0;
dilation_angle0_c = 0.0; dilation_angle1_c = 0.0; plastic_viscosity_c = 0.0;
for( int ii = 0; ii < mat_num; ii++ )
{
pls0_c = pls0_c + comp_gf[i+nsize*ii]*pls0[ii];
pls1_c = pls1_c + comp_gf[i+nsize*ii]*pls1[ii];
rho_c = rho_c + comp_gf[i+nsize*ii]*rho[ii];
lambda_c = lambda_c + comp_gf[i+nsize*ii]*lambda[ii];
mu_c = mu_c + comp_gf[i+nsize*ii]*mu[ii];
tension_cutoff_c = tension_cutoff_c + comp_gf[i+nsize*ii]*tension_cutoff[ii];
cohesion0_c = cohesion0_c + comp_gf[i+nsize*ii]*cohesion0[ii];
cohesion1_c = cohesion1_c + comp_gf[i+nsize*ii]*cohesion1[ii];
friction_angle0_c = friction_angle0_c + comp_gf[i+nsize*ii]*friction_angle0[ii];
friction_angle1_c = friction_angle1_c + comp_gf[i+nsize*ii]*friction_angle1[ii];
dilation_angle0_c = dilation_angle0_c + comp_gf[i+nsize*ii]*dilation_angle0[ii];
dilation_angle1_c = dilation_angle1_c + comp_gf[i+nsize*ii]*dilation_angle1[ii];
// plastic_viscosity_c = plastic_viscosity_c + comp_gf[i+nsize*ii]*plastic_viscosity[ii];
}
// linear weakening
p_slope = (pls_old - pls0_c)/(pls1_c - pls0_c);
pwave_speed = sqrt((lambda_c + 2*mu_c)/rho_c);
if(h_min > 0){time_scale = h_min / pwave_speed;}
plastic_viscosity_c = time_scale * mu_c;
// std::cout << time_scale <<',' << plastic_viscosity_c << std::endl;
// 2D in plane strain condition
// sxx, syy, szz, sxz are non zeros.
// sxy, syz are zero.
msig = (s_gf[i+nsize*0] + s_gf[i+nsize*1])*0.5;
evol = msig/(lambda_c+mu_c);
syy = evol * lambda_c;
esig(0,0) = s_gf[i+nsize*0]; esig(0,1) = s_gf[i+nsize*2];
esig(1,0) = s_gf[i+nsize*2]; esig(1,1) = s_gf[i+nsize*1];
// Caushy stress at previous time step
msig = (s_old_gf[i+nsize*0] + s_old_gf[i+nsize*1])*0.5;
evol = msig/(lambda_c+mu_c);
syy_old = evol * lambda_c;
esig_old(0,0) = s_old_gf[i+nsize*0]; esig_old(0,1) = s_old_gf[i+nsize*2];
esig_old(1,0) = s_old_gf[i+nsize*2]; esig_old(1,1) = s_old_gf[i+nsize*1];
// Elastic stress increment
esig_inc(0,0) = esig(0,0) - esig_old(0,0); esig_inc(0,1) = esig(0,1) - esig_old(0,1);
esig_inc(1,0) = esig(1,0) - esig_old(1,0); esig_inc(1,1) = esig(1,1) - esig_old(1,1);
// esig.CalcEigenvalues(eig_sig_var, eig_sig_vec);
esig.CalcEigenvalues(eig_sig_var.GetData(), eig_sig_vec.GetData());
// Vector sig_var(eig_sig_var, 2);
// Vector eig_sig_dir(eig_sig_vec, 4);
auto max_it = std::max_element(eig_sig_var.begin(), eig_sig_var.end()); // find iterator to max element
auto min_it = std::min_element(eig_sig_var.begin(), eig_sig_var.end()); // find iterator to min element
int max_index = std::distance(eig_sig_var.begin(), max_it); // calculate index of max element
int min_index = std::distance(eig_sig_var.begin(), min_it); // calculate index of min element
// int itm_index = 0; // calculate index of intermediate element
// if (max_index + min_index == 1) {itm_index = 2;}
// else if(max_index + min_index == 2) {itm_index = 1;}
// else {itm_index = 0;}
sig1 = eig_sig_var[min_index]; // most compressive pincipal stress
sig3 = eig_sig_var[max_index]; // least compressive pincipal stress
// linear strain weaking on cohesion, friction and dilation angles.
coh_str = cohesion0_c; fri_str = friction_angle0_c; dil_str = dilation_angle0_c;
if (pls_old < pls0_c) {
// no weakening yet
coh_str = cohesion0_c;
fri_str = friction_angle0_c;
dil_str = dilation_angle0_c;
}
else if (pls_old < pls1_c) {
// linear weakening
coh_str = cohesion0_c + p_slope * (cohesion1_c - cohesion0_c);
fri_str = friction_angle0_c + p_slope * (friction_angle1_c - friction_angle0_c);
dil_str = dilation_angle0_c + p_slope * (dilation_angle1_c - dilation_angle0_c);
}
else {
// saturated weakening
coh_str = cohesion1_c; fri_str = friction_angle1_c; dil_str = dilation_angle1_c;
}
N_phi = (1+sin(DEG2RAD*fri_str))/(1-sin(DEG2RAD*fri_str));
st_N_phi = cos(DEG2RAD*fri_str)/(1-sin(DEG2RAD*fri_str));
N_psi = -1*(1+sin(DEG2RAD*dil_str))/(1-sin(DEG2RAD*dil_str)); // partial_g/partial_sig3
if(tension_cutoff_c == 0)
{
ten_cut = coh_str/tan(DEG2RAD*fri_str);
}
else{ten_cut = tension_cutoff_c;}
// shear failure function
fs = sig1 - N_phi*sig3 + 2*coh_str*st_N_phi;
// tension failure function
ft = sig3 - ten_cut;
// bisects the obtuse angle made by two yield function
fh = sig3 - ten_cut + (sqrt(N_phi*N_phi + 1.0)+ N_phi)*(sig1 - N_phi*ten_cut + 2*coh_str*st_N_phi);
depls = 0.0;
if(fs < 0 & fh < 0) // stress correction at shear failure
{
// Equations 28 and 30 from Choi et al. (2013; DynEarthSol2D: An efficient unstructured finite element method to study long-term tectonic deformation).
beta = fs;
beta = beta / (((lambda_c+2*mu_c)*1 - N_phi*lambda_c*1) + (lambda_c*N_psi - N_phi*(lambda_c+2*mu_c)*N_psi));
plastic_str(0,0) = (lambda_c + 2*mu_c + lambda_c*N_psi) * beta;
syy -= (lambda_c + lambda_c*N_psi) * beta;
plastic_str(1,1) = (lambda_c + (lambda_c+2*mu_c)*N_psi) * beta;
// reduced form of 2nd invariant
depls = std::fabs(beta) * std::sqrt((3 - 2*N_psi + 3*N_psi*N_psi) / 8);
}
else if (ft > 0 & fh > 0) // stress correction at tension failure
{
beta = ft;
beta = beta/(lambda_c+2*mu_c);
plastic_str(0,0) = lambda_c * beta * 1;
syy -= lambda_c * beta * 1;
plastic_str(1,1) = (lambda_c+2*mu_c) * beta * 1;
// reduced form of 2nd invariant
depls = std::fabs(beta) * std::sqrt(7. / 18);
}
// Rotating Principal axis to XYZ axis
plastic_sig(0,0) = ((eig_sig_var[min_index]-plastic_str(0,0))*eig_sig_vec[0+min_index*2]*eig_sig_vec[0+min_index*2] + (eig_sig_var[max_index]-plastic_str(1,1))*eig_sig_vec[0+max_index*2]*eig_sig_vec[0+max_index*2]);
plastic_sig(0,1) = ((eig_sig_var[min_index]-plastic_str(0,0))*eig_sig_vec[0+min_index*2]*eig_sig_vec[1+min_index*2] + (eig_sig_var[max_index]-plastic_str(1,1))*eig_sig_vec[0+max_index*2]*eig_sig_vec[1+max_index*2]);
plastic_sig(1,0) = ((eig_sig_var[min_index]-plastic_str(0,0))*eig_sig_vec[1+min_index*2]*eig_sig_vec[0+min_index*2] + (eig_sig_var[max_index]-plastic_str(1,1))*eig_sig_vec[1+max_index*2]*eig_sig_vec[0+max_index*2]);
plastic_sig(1,1) = ((eig_sig_var[min_index]-plastic_str(0,0))*eig_sig_vec[1+min_index*2]*eig_sig_vec[1+min_index*2] + (eig_sig_var[max_index]-plastic_str(1,1))*eig_sig_vec[1+max_index*2]*eig_sig_vec[1+max_index*2]);
// Updating new stress to grid function
viscosity = plastic_viscosity_c;
relax = exp(-dt_old/viscosity);
numerator = fabs(1 - relax);
denominator= fabs(dt_old/viscosity);
dt_scaled = dt_old/viscosity;
// Based on L'Hôpital's rule, 0/0 become 1
// if((numerator > 1e-15) & (denominator > 1e-15)){relax_limit = (1 - relax)/(dt_old/viscosity);}
// if(viscosity > 1e+100){viscoplastic = false;}
if((fs < 0 & fh < 0) | (ft > 0 & fh > 0))
{
if(viscoplastic)
{
// Implicit backward Euler algorithm
s_gf[i+nsize*0]=((esig_old(0,0) + esig_inc(0,0)) + dt_scaled*plastic_sig(0,0))/(1.0+dt_scaled);
s_gf[i+nsize*2]=((esig_old(0,1) + esig_inc(0,1)) + dt_scaled*plastic_sig(0,1))/(1.0+dt_scaled);
s_gf[i+nsize*2]=((esig_old(1,0) + esig_inc(1,0)) + dt_scaled*plastic_sig(1,0))/(1.0+dt_scaled);
s_gf[i+nsize*1]=((esig_old(1,1) + esig_inc(1,1)) + dt_scaled*plastic_sig(1,1))/(1.0+dt_scaled);
}
else
{
s_gf[i+nsize*0]=plastic_sig(0,0); s_gf[i+nsize*2]=plastic_sig(0,1);
s_gf[i+nsize*2]=plastic_sig(1,0); s_gf[i+nsize*1]=plastic_sig(1,1);
}
}
// Adding 2nd invariant of plastic strain increment
if(viscoplastic)
{
// depls = (1 - relax)*depls;
depls = dt_scaled*depls/(1.0+dt_scaled);
p_gf[i] += depls;
}
else
{
p_gf[i] += std::fabs(depls);
}
}
break;
}
default:
std::cout << "Returnmapping is implemented for 2 or 3 dimesions only." << std::endl;
break;
} // End of switch
} // End of ReturnMapping
} // End of namespace