-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
6732d80
commit 383deac
Showing
2 changed files
with
180 additions
and
97 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
# 通过用户访问的creative_id的序列,生成每个creative_id的词嵌入 | ||
# %% | ||
import pandas as pd | ||
import numpy as np | ||
from tqdm import tqdm | ||
from gensim.test.utils import datapath | ||
from gensim.models.word2vec import LineSentence | ||
from gensim.models import Word2Vec | ||
from gensim.models import KeyedVectors | ||
from gensim.test.utils import common_texts, get_tmpfile | ||
import pickle | ||
from mail import mail | ||
# %% | ||
df_train = pd.read_csv( | ||
'data/train_preliminary/clicklog_ad_user_train_eval_test.csv') | ||
df_test = pd.read_csv('data/test/clicklog_ad_user_test.csv') | ||
columns = ['user_id', 'creative_id', 'time'] | ||
frame = [df_train[columns], df_test[columns]] | ||
df_train_test = pd.concat(frame, ignore_index=True) | ||
df_train_test_sorted = df_train_test.sort_values( | ||
["user_id", "time"], ascending=(True, True)) | ||
# %% | ||
with open('word2vec/df_train_test_sorted.pkl', 'wb') as f: | ||
pickle.dump(df_train_test_sorted, f) | ||
# %% | ||
with open('word2vec/df_train_test_sorted.pkl', 'rb') as f: | ||
df_train_test_sorted = pickle.load(f) | ||
# %% | ||
userid_creative_ids = df_train_test_sorted.groupby( | ||
'user_id')['creative_id'].apply(list).reset_index(name='creative_ids') | ||
# %% | ||
with open('word2vec/userid_creative_ids.txt', 'w')as f: | ||
for ids in userid_creative_ids.creative_ids: | ||
ids = [str(e) for e in ids] | ||
line = ' '.join(ids) | ||
f.write(line+'\n') | ||
# %% | ||
sentences = LineSentence('word2vec/userid_creative_ids.txt') | ||
dimension_embedding = 128 | ||
model = Word2Vec(sentences, size=dimension_embedding, | ||
window=10, min_count=1, workers=-1, iter=10, sg=1) | ||
model.save("word2vec/word2vec_creative_id.model") | ||
path = "word2vec/wordvectors_creative_id.kv" | ||
model.wv.save(path) | ||
print('Save embedding done!!!') | ||
# %% | ||
path = "word2vec/wordvectors_creative_id.kv" | ||
wv = KeyedVectors.load(path, mmap='r') | ||
dimension_embedding = 128 | ||
columns = ['c'+str(i) for i in range(dimension_embedding)] | ||
data = {} | ||
for col_name in columns: | ||
data[col_name] = pd.Series([], dtype='float') | ||
df_creative_id_embedding = pd.DataFrame(data) | ||
|
||
# %% | ||
data = {} | ||
for key in tqdm(wv.vocab): | ||
data[int(key)] = wv[key].tolist() | ||
# %% | ||
df_creative_id_embedding = pd.DataFrame.from_dict( | ||
data, orient='index', | ||
columns=columns) | ||
df_creative_id_embedding['creative_id'] = df_creative_id_embedding.index | ||
# %% | ||
df_creative_id_embedding.to_hdf( | ||
'word2vec/df_creative_id_embedding.h5', | ||
key='df_creative_id_embedding', mode='w') | ||
mail('save h5 done') | ||
# %% | ||
df_creative_id_embedding = pd.read_hdf( | ||
'word2vec/df_creative_id_embedding.h5', | ||
key='df_creative_id_embedding', mode='r') | ||
# %% | ||
# %% | ||
try: | ||
userid_creative_id_embedding = pd.merge( | ||
df_train_test_sorted, df_creative_id_embedding, on='creative_id', how='left') | ||
userid_creative_id_embedding.drop( | ||
columns=['creative_id', 'time'], inplace=True) | ||
userid_creative_id_embedding.groupby('user_id').mean().to_csv( | ||
'word2vec/creative_id.csv', header=True, index=False) | ||
mail('to csv done') | ||
except: | ||
mail('failed') | ||
# %% | ||
# columns = ['c'+str(i) for i in range(128)] | ||
# data = {} | ||
# for col_name in columns: | ||
# data[col_name] = pd.Series([], dtype='float') | ||
# df_user_embedding = pd.DataFrame(data) | ||
# # %% | ||
# # this will take 24 hours!!! | ||
# # debug = 0 | ||
# for user in tqdm(range(len(seq_creative_id))): | ||
# user_em = df_creative_id_embedding.loc[seq_creative_id[user]].mean() | ||
# # df_user_embedding = df_user_embedding.append(user_em, ignore_index=True) | ||
# debug += 1 | ||
# if debug == 10: | ||
# break | ||
# debug = 0 | ||
# frames = [] | ||
# for creative_id in tqdm.tqdm(wv.vocab): | ||
# creativeid_embedding = wv[creative_id] | ||
# tmp = pd.DataFrame( | ||
# creativeid_embedding.reshape(-1, len(creativeid_embedding)), | ||
# columns=columns[:-1]) | ||
# # df_creativeid_embedding = df_creativeid_embedding.append(tmp) | ||
# frames.append(tmp) | ||
# if len(frames) == 1000000: | ||
# # frames = [df_creativeid_embedding, tmp] | ||
# frames = [df_creativeid_embedding]+frames | ||
# df_creativeid_embedding = pd.concat(frames) | ||
# frames = [] | ||
# df_creativeid_embedding.iloc[-1, -1] = str(creative_id) | ||
# %% | ||
# if len(frames) != 0: | ||
# frames = [df_creativeid_embedding]+frames | ||
# df_creativeid_embedding = pd.concat(frames) | ||
# df_creativeid_embedding.to_hdf('data/clicklog_ad_user_train_eval_test.h5', | ||
# key='df_creativeid_embedding', mode='w') | ||
|
||
# debug += 1 | ||
# if debug == 10: | ||
# break | ||
|
||
|
||
# %% |