-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
134 additions
and
96 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
import argparse | ||
from pathlib import Path | ||
|
||
import geopandas as gpd | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import pandas as pd | ||
import polars as pl | ||
from shapely.geometry import Point | ||
from tqdm import tqdm | ||
import xarray as xr | ||
import zarr | ||
|
||
def parse_arguments(): | ||
"""Parsing the arguments for zone""" | ||
parser = argparse.ArgumentParser(description='Process HydroSWOT river width and depth obs for a specified zone') | ||
parser.add_argument('--zone', type=str, required=True, help='Zone identifier for MERIT data processing') | ||
return parser.parse_args() | ||
|
||
def merge(zone: str): | ||
"""Merging and writing the hydroswot streamflow points to the edges zarr store | ||
Parameters | ||
---------- | ||
zone: str | ||
the merit zone we're pulling obs from | ||
Note | ||
---- | ||
You will need to install the following pacakge for this script to work: | ||
`uv pip install openpyxl` | ||
""" | ||
print("reading zarr store and excel file") | ||
root_path = Path(f"/projects/mhpi/data/MERIT/zarr/graph/CONUS/edges/{zone}") | ||
if root_path.exists() is False: | ||
raise FileNotFoundError("Cannot find your Zarr store") | ||
root = zarr.open_group(root_path) | ||
|
||
file_path = Path("/projects/mhpi/data/swot/SWOT_ADCP_Dataset.xlsx") | ||
if file_path.exists() == False: | ||
raise FileNotFoundError("Cannot find SWOT data") | ||
df = pd.read_excel(file_path) | ||
geometry = [Point(xy) for xy in zip(df["dec_long_va"], df["dec_lat_va"])] | ||
gdf = gpd.GeoDataFrame(df, geometry=geometry, crs="EPSG:4326") | ||
|
||
print("reading river gdf and buffering lines") | ||
# basin_shp_file = Path(f"/projects/mhpi/data/MERIT/raw/basins/cat_pfaf_{zone}_MERIT_Hydro_v07_Basins_v01_bugfix1.shp") | ||
riv_shp_file = Path(f"/projects/mhpi/data/MERIT/raw/flowlines/riv_pfaf_{zone}_MERIT_Hydro_v07_Basins_v01_bugfix1.shp") | ||
# if basin_shp_file.exists() == False: | ||
# raise FileNotFoundError("Cannot find MERIT basin COMID data") | ||
if riv_shp_file.exists() == False: | ||
raise FileNotFoundError("Cannot find MERIT flowlines COMID data") | ||
# basin_gdf = gpd.read_file(filename=basin_shp_file) | ||
riv_gdf = gpd.read_file(filename=riv_shp_file).to_crs("EPSG:5070") | ||
|
||
riv_gdf.geometry = riv_gdf.buffer(200) | ||
riv_gdf = riv_gdf.to_crs("EPSG:4326") | ||
|
||
print("Running spatial join") | ||
matched_gdf = gpd.sjoin(left_df=gdf, right_df=riv_gdf, how='inner', predicate='intersects') | ||
geometry = [Point(xy) for xy in zip(matched_gdf["dec_long_va"], matched_gdf["dec_lat_va"])] | ||
point_gdf = gpd.GeoDataFrame(matched_gdf, geometry=geometry, crs="EPSG:4326") | ||
|
||
if "mean_observed_swot_width" not in root: | ||
json_ = { | ||
"merit_COMID": point_gdf["COMID"].values, | ||
"drainage_area": point_gdf["drain_area_va"].values * 2.58999, # converting from mi^2 to km^2 | ||
"width": point_gdf["stream_wdth_va"].values * 0.3048, # converting from feet to meters | ||
} | ||
df = pl.DataFrame( | ||
data=json_, | ||
).filter(~pl.all_horizontal(pl.col("width").is_nan())).filter(~pl.all_horizontal(pl.col("drainage_area").is_nan())) | ||
|
||
drainage_area_avg = df.group_by("merit_COMID").agg(pl.col("drainage_area").mean()).sort("merit_COMID") | ||
width_avg = df.group_by("merit_COMID").agg(pl.col("width").mean()).sort("merit_COMID") | ||
comids = width_avg.select("merit_COMID").to_numpy().squeeze() | ||
basins = root.merit_basin[:] | ||
width_np = np.full_like(root.id[:], -1) | ||
for comid in tqdm(comids, desc="writing comids"): | ||
idx = np.argwhere(basins == comid).squeeze() | ||
uparea = root.uparea[idx][-1] | ||
measured_width = width_avg.filter(pl.col("merit_COMID") == comid).select("width").to_numpy()[0][0] | ||
measured_da = drainage_area_avg.filter(pl.col("merit_COMID") == comid).select("drainage_area").to_numpy()[0][0] | ||
if uparea < 1000: | ||
threshold = 0.25 | ||
else: | ||
threshold = 0.1 | ||
if np.abs((measured_da - uparea) / uparea) < threshold: | ||
width_np[idx] = measured_width | ||
|
||
root.create_array(name="mean_observed_swot_width", data=width_np.astype(np.float32)) | ||
else: | ||
print("width write has already been made") | ||
|
||
if "mean_observed_swot_depth" not in root: | ||
json_ = { | ||
"merit_COMID": point_gdf["COMID"].values, | ||
"drainage_area": point_gdf["drain_area_va"].values * 2.58999, # converting from mi^2 to km^2 | ||
"mean_depth": point_gdf["mean_depth_va"].values * 0.3048, # converting from feet to meters | ||
} | ||
df = pl.DataFrame( | ||
data=json_, | ||
).filter(~pl.all_horizontal(pl.col("mean_depth").is_nan())).filter(~pl.all_horizontal(pl.col("drainage_area").is_nan())) | ||
|
||
drainage_area_avg = df.group_by("merit_COMID").agg(pl.col("drainage_area").mean()).sort("merit_COMID") | ||
depth_avg = df.group_by("merit_COMID").agg(pl.col("mean_depth").mean()).sort("merit_COMID") | ||
|
||
comids = depth_avg.select("merit_COMID").to_numpy().squeeze() | ||
basins = root.merit_basin[:] | ||
depth_np = np.full_like(root.id[:], -1) | ||
for comid in tqdm(comids, desc="writing comids"): | ||
idx = np.argwhere(basins == comid).squeeze() | ||
uparea = root.uparea[idx][-1] | ||
measured_depth = depth_avg.filter(pl.col("merit_COMID") == comid).select("mean_depth").to_numpy()[0][0] | ||
measured_da = drainage_area_avg.filter(pl.col("merit_COMID") == comid).select("drainage_area").to_numpy()[0][0] | ||
if uparea < 1000: | ||
threshold = 0.25 | ||
else: | ||
threshold = 0.1 | ||
if np.abs((measured_da - uparea) / uparea) < threshold: | ||
depth_np[idx] = measured_depth | ||
|
||
root.array(name="mean_observed_swot_depth", data=depth_np.astype(np.float32)) | ||
else: | ||
print("depth write has already been made") | ||
|
||
print("Finished") | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_arguments() | ||
merge(args.zone) | ||
# zone = "74" | ||
# merge(zone) |
This file was deleted.
Oops, something went wrong.