Skip to content

Commit

Permalink
fix blueprint
Browse files Browse the repository at this point in the history
Co-authored-by: Pietro Monticone <[email protected]>
  • Loading branch information
LorenzoLuccioli and pitmonticone committed Jun 17, 2024
1 parent 7b41843 commit 17d098e
Showing 1 changed file with 2 additions and 2 deletions.
4 changes: 2 additions & 2 deletions blueprint/src/chapter/torsion.tex
Original file line number Diff line number Diff line change
Expand Up @@ -100,12 +100,12 @@ \section{More Ruzsa distance estimates}
\end{proof}

\begin{lemma}[Kaimonovich--Vershik--Madiman inequality, III]\label{klm-3}\lean{kvm_ineq_III}\leanok If $n \geq 1$ and $X, Y_1, \dots, Y_n$ are jointly independent $G$-valued random variables, then
$$ d[X; \sum_{i=1}^n Y_i] \leq d[X; Y_1] + \frac{1}{2}(\bbH[ \sum_{i=1}^n Y_i ] - \bbH[Y_1]).$$
$$d\left[X; \sum_{i=1}^n Y_i\right] \leq d\left[X; Y_1\right] + \frac{1}{2}\left(\bbH\left[ \sum_{i=1}^n Y_i\right] - \bbH[Y_1]\right).$$
\end{lemma}

\begin{proof}\uses{kv, ruz-indep}
From \Cref{kv} one has
$$ \bbH[ -X + \sum_{i=1}^n Y_i ] \leq \bbH[ - X + Y_1 ] + \bbH[ \sum_{i=1}^n Y_i ] - \bbH[ \sum_{i=2}^n Y_i ].$$
$$ \bbH\left[-X + \sum_{i=1}^n Y_i\right] \leq \bbH[ - X + Y_1 ] + \bbH\left[ \sum_{i=1}^n Y_i \right] - \bbH[Y_1].$$
The claim then follows from \Cref{ruz-indep} and some elementary algebra.
\end{proof}

Expand Down

0 comments on commit 17d098e

Please sign in to comment.