Skip to content

Commit

Permalink
Redesign the internal mechanism for grouping data
Browse files Browse the repository at this point in the history
  • Loading branch information
nfrerebeau committed Dec 18, 2024
1 parent fa45e71 commit 44e4c20
Show file tree
Hide file tree
Showing 92 changed files with 1,862 additions and 976 deletions.
18 changes: 15 additions & 3 deletions NAMESPACE
Original file line number Diff line number Diff line change
@@ -1,7 +1,10 @@
# Generated by roxygen2: do not edit by hand

S3method(aggregate,CompositionMatrix)
S3method(aggregate,GroupedComposition)
S3method(as.data.frame,CompositionMatrix)
S3method(as.data.frame,GroupedComposition)
S3method(as.data.frame,GroupedLogRatio)
S3method(as.data.frame,LogRatio)
S3method(as.data.frame,OutlierIndex)
S3method(barplot,CompositionMatrix)
Expand All @@ -13,6 +16,7 @@ S3method(mahalanobis,CompositionMatrix)
S3method(mahalanobis,ILR)
S3method(mean,CompositionMatrix)
S3method(plot,CompositionMatrix)
S3method(plot,GroupedComposition)
S3method(plot,LogRatio)
S3method(plot,OutlierIndex)
S3method(quantile,CompositionMatrix)
Expand All @@ -38,9 +42,9 @@ exportMethods("%power%")
exportMethods("[")
exportMethods("[<-")
exportMethods("[[<-")
exportMethods("groups<-")
exportMethods("totals<-")
exportMethods(aggregate)
exportMethods(all_assigned)
exportMethods(any_assigned)
exportMethods(as_amounts)
exportMethods(as_composition)
Expand All @@ -52,8 +56,15 @@ exportMethods(covariance)
exportMethods(describe)
exportMethods(detect_outlier)
exportMethods(dist)
exportMethods(extract)
exportMethods(groups)
exportMethods(group)
exportMethods(group_extract)
exportMethods(group_indices)
exportMethods(group_length)
exportMethods(group_levels)
exportMethods(group_names)
exportMethods(group_rows)
exportMethods(group_size)
exportMethods(group_split)
exportMethods(hist)
exportMethods(is_assigned)
exportMethods(is_element_major)
Expand Down Expand Up @@ -86,6 +97,7 @@ exportMethods(transform_ilr)
exportMethods(transform_inverse)
exportMethods(transform_lr)
exportMethods(transform_plr)
exportMethods(ungroup)
exportMethods(univariate_ilr)
exportMethods(variance)
exportMethods(variance_total)
Expand Down
6 changes: 6 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,11 @@
# nexus 0.3.0.9000
## New classes and methods
* Add `ReferenceGroups`, `GroupedComposition` and `GroupedLogRatio` classes to represent grouped data.
* Add `group()`, `ungroup()`, `group_levels()`, `group_names()`, `group_indices()`, `group_rows()`, `group_length()`, `group_size()`, `group_extract()` and `group_split()` to work with grouped data.
* Add `transform_lr()`, `transform_clr()`, `transform_alr()`, `transform_ilr()`, `transform_plr()` and `transform_inverse()` methods for `GroupedComposition` and `GroupedLogRatio` objects.

## Breaking changes
* Redesign the internal mechanism for grouping data.
* `hist()` now produces a single histogram.

# nexus 0.3.0
Expand Down
133 changes: 108 additions & 25 deletions R/AllClasses.R
Original file line number Diff line number Diff line change
Expand Up @@ -8,36 +8,43 @@ setOldClass("dist")
## (for 'i' in x[i], x[i, ], x[, i], etc.)
setClassUnion("index", members = c("logical", "numeric", "character"))

# CompositionMatrix ============================================================
#' Numeric Matrix
# ReferenceGroups ==============================================================
#' Grouped Data
#'
#' S4 classes that represent a \eqn{m \times p}{m x p} numeric matrix.
#' @slot .Data A \eqn{m \times p}{m x p} `numeric` [`matrix`].
#' @note
#' This class inherits from [`matrix`].
#' A virtual S4 class to represent reference groups.
#' @slot group_indices An [`integer`] vector to store the group that each value
#' belongs to.
#' @slot group_levels A [`character`] vector to store the values of the grouping
#' variables.
#' @example inst/examples/ex-matrix.R
#' @author N. Frerebeau
#' @family classes
#' @docType class
#' @aliases NumericMatrix-class
#' @aliases ReferenceGroups-class
#' @keywords internal
.NumericMatrix <- setClass(
Class = "NumericMatrix",
contains = "matrix"
.ReferenceGroups <- setClass(
Class = "ReferenceGroups",
slots = c(
group_indices = "integer",
group_levels = "character"
),
contains = c("VIRTUAL")
)

#' Logical Matrix
# CompositionMatrix ============================================================
#' Numeric Matrix
#'
#' S4 classes that represent a \eqn{m \times p}{m x p} logical matrix.
#' @slot .Data A \eqn{m \times p}{m x p} `logical` [`matrix`].
#' S4 classes that represent a \eqn{m \times p}{m x p} numeric matrix.
#' @slot .Data A \eqn{m \times p}{m x p} `numeric` [`matrix`].
#' @note
#' This class inherits from [`matrix`].
#' @author N. Frerebeau
#' @family classes
#' @docType class
#' @aliases LogicalMatrix-class
#' @aliases NumericMatrix-class
#' @keywords internal
.LogicalMatrix <- setClass(
Class = "LogicalMatrix",
.NumericMatrix <- setClass(
Class = "NumericMatrix",
contains = "matrix"
)

Expand All @@ -46,7 +53,6 @@ setClassUnion("index", members = c("logical", "numeric", "character"))
#' An S4 class to represent compositional data.
#' @slot totals A [`numeric`] vector to store the absolute row sums (before
#' the closure of the compositions).
#' @slot groups A [`factor`] vector to store the group names.
#' @section Coerce:
#' In the code snippets below, `x` is a `CompositionMatrix` object.
#' \describe{
Expand All @@ -58,7 +64,7 @@ setClassUnion("index", members = c("logical", "numeric", "character"))
#' \item{`x[i, j]`}{Extract parts of a matrix (see [`[`][subset]).}
#' }
#' @note
#' This class inherits from [`matrix`].
#' This class inherits from [`NumericMatrix-class`].
#' @seealso [as_composition()]
#' @example inst/examples/ex-matrix.R
#' @author N. Frerebeau
Expand All @@ -69,19 +75,40 @@ setClassUnion("index", members = c("logical", "numeric", "character"))
.CompositionMatrix <- setClass(
Class = "CompositionMatrix",
slots = c(
totals = "numeric",
groups = "factor"
totals = "numeric"
),
contains = c("NumericMatrix")
)

#' Grouped Compositional Matrix
#'
#' An S4 class to represent grouped compositional data.
#' @section Coerce:
#' In the code snippets below, `x` is a `GroupedComposition` object.
#' \describe{
#' \item{`as.data.frame(x)`}{Coerces to a [`data.frame`].}
#' }
#' @note
#' This class inherits from [`CompositionMatrix-class`] and
#' [`ReferenceGroups-class`].
#' @seealso [as_composition()]
#' @example inst/examples/ex-matrix.R
#' @author N. Frerebeau
#' @family classes
#' @docType class
#' @aliases GroupedComposition-class
#' @keywords internal
.GroupedComposition <- setClass(
Class = "GroupedComposition",
contains = c("CompositionMatrix", "ReferenceGroups")
)

# Transformations ==============================================================
#' Log-Ratio Matrix
#'
#' S4 classes to represent log-ratio data transformations.
#' @slot totals A [`numeric`] vector to store the absolute row sums (before
#' the closure of the compositions).
#' @slot groups A [`factor`] vector to store the group names.
#' @slot parts A [`character`] vector to store the original part names.
#' @slot ratio A [`character`] vector to store the ratio names.
#' @slot order An [`integer`] vector to store the original ordering of the
Expand All @@ -107,8 +134,6 @@ setClassUnion("index", members = c("logical", "numeric", "character"))
Class = "LogRatio",
slots = c(
totals = "numeric",
groups = "factor",

parts = "character",
ratio = "character",
order = "integer",
Expand Down Expand Up @@ -153,12 +178,71 @@ setClassUnion("index", members = c("logical", "numeric", "character"))
contains = "ILR"
)

#' Grouped Log-Ratio Matrix
#'
#' An S4 class to represent grouped log-ratio.
#' @section Coerce:
#' In the code snippets below, `x` is a `GroupedLogRatio` object.
#' \describe{
#' \item{`as.data.frame(x)`}{Coerces to a [`data.frame`].}
#' }
#' @note
#' This class inherits from [`LogRatio-class`] and
#' [`ReferenceGroups-class`].
#' @example inst/examples/ex-matrix.R
#' @author N. Frerebeau
#' @family classes
#' @docType class
#' @name GroupedLogRatio-class
#' @rdname GroupedLogRatio-class
#' @keywords internal
NULL

#' @rdname GroupedLogRatio-class
#' @aliases GroupedLR-class
.GroupedLR <- setClass(
Class = "GroupedLR",
contains = c("LR", "ReferenceGroups")
)

#' @rdname GroupedLogRatio-class
#' @aliases GroupedCLR-class
.GroupedCLR <- setClass(
Class = "GroupedCLR",
contains = c("CLR", "ReferenceGroups")
)

#' @rdname GroupedLogRatio-class
#' @aliases GroupedALR-class
.GroupedALR <- setClass(
Class = "GroupedALR",
contains = c("ALR", "ReferenceGroups")
)

#' @rdname GroupedLogRatio-class
#' @aliases GroupedILR-class
.GroupedILR <- setClass(
Class = "GroupedILR",
contains = c("ILR", "ReferenceGroups")
)

#' @rdname GroupedLogRatio-class
#' @aliases GroupedPLR-class
.GroupedPLR <- setClass(
Class = "GroupedPLR",
contains = c("PLR", "ReferenceGroups")
)

setClassUnion(
name = "GroupedLogRatio",
members = c("GroupedLR", "GroupedCLR", "GroupedALR", "GroupedILR", "GroupedPLR")
)

# OutlierIndex =================================================================
#' Outliers
#'
#' An S4 class to store the result of outlier detection.
#' @slot samples A [`character`] vector to store the sample identifiers.
#' @slot groups A [`factor`] vector to store the group names.
#' @slot standard A [`numeric`] matrix giving the standard squared Mahalanobis
#' distances.
#' @slot robust A [`numeric`] matrix giving the robust squared Mahalanobis
Expand All @@ -180,7 +264,6 @@ setClassUnion("index", members = c("logical", "numeric", "character"))
Class = "OutlierIndex",
slots = c(
samples = "character",
groups = "factor",
standard = "numeric",
robust = "numeric",
limit = "numeric",
Expand Down
Loading

0 comments on commit 44e4c20

Please sign in to comment.