Skip to content

Commit

Permalink
spelling and slight refactor
Browse files Browse the repository at this point in the history
  • Loading branch information
4e554c4c committed Feb 8, 2025
1 parent 733a9b7 commit 81ccfea
Showing 1 changed file with 12 additions and 10 deletions.
22 changes: 12 additions & 10 deletions src/Cat/Instances/Shape/Parallel.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,8 @@ parallel arrows between them. It is the shape of [[equaliser]] and
```
-->

The parallel category is isomorphic to its opposite through the involution `not : Bool Bool`.
The parallel category is isomorphic to its opposite through the
involution `not`{.Agda}.

```agda
·⇇· = ·⇉· ^op
Expand All @@ -101,10 +102,11 @@ The parallel category is isomorphic to its opposite through the involution `not
F .F-∘ {false} {false} {false} f g = refl

F-is-iso : is-precat-iso F
F-is-iso .has-is-ff {true} {true} .is-eqv _ = hlevel 0
F-is-iso .has-is-ff {true} {false} = id-equiv
F-is-iso .has-is-ff {false} {false} .is-eqv y = hlevel 0
F-is-iso .has-is-iso = not-is-equiv
F-is-iso .has-is-ff {true} {true} = id-equiv
F-is-iso .has-is-ff {true} {false} = id-equiv
F-is-iso .has-is-ff {false} {false} = id-equiv
F-is-iso .has-is-ff {false} {true} .is-eqv ()
```

<!--
Expand All @@ -120,7 +122,7 @@ module _ {o ℓ} {C : Precategory o ℓ} where
```
-->

Paralell pairs of morphisms in a category $\cC$ are equivalent to functors from the
Parallel pairs of morphisms in a category $\cC$ are equivalent to functors from the
walking parallel arrow category to $\cC$.

```agda
Expand All @@ -142,14 +144,14 @@ walking parallel arrow category to $\cC$.
```

A natural transformation between two diagrams
$A \stackrel{\overset{f}{\longrightarrow}}{\underset{g}{\longrightarrow}} B$ and
$C \stackrel{\overset{f'}{\longrightarrow}}{\underset{g'}{\longrightarrow}} D$
is given by a pair of commutative squares
$A\ \overset{f}{\underset{g}{\tto}}\ B$ and
$C\ \overset{f'}{\underset{g'}{\tto}}\ D$ is given by a pair of
commutative squares

~~~{.quiver}
\begin{tikzcd}
A & B && A & B \\
C & D && C & D
C & D && C & D.
\arrow["f", from=1-1, to=1-2]
\arrow["u"', from=1-1, to=2-1]
\arrow["v", from=1-2, to=2-2]
Expand All @@ -158,7 +160,7 @@ is given by a pair of commutative squares
\arrow["v", from=1-5, to=2-5]
\arrow["{f'}", from=2-1, to=2-2]
\arrow["{g'}", from=2-4, to=2-5]
\end{tikzcd}.
\end{tikzcd}
~~~

```agda
Expand Down

0 comments on commit 81ccfea

Please sign in to comment.