Skip to content

Commit

Permalink
Use the macro in Algebra.Group.Homotopy
Browse files Browse the repository at this point in the history
  • Loading branch information
ncfavier committed Nov 29, 2023
1 parent 4cdd008 commit ee70dba
Showing 1 changed file with 5 additions and 14 deletions.
19 changes: 5 additions & 14 deletions src/Algebra/Group/Homotopy.lagda.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
<!--
```agda
open import 1Lab.Reflection.Induction
open import 1Lab.Prelude

open import Algebra.Group.Cat.Base
Expand Down Expand Up @@ -236,26 +237,16 @@ eliminator into propositions later, so we define that now.
SquareP (λ i j P (path-sq x y i j))
(λ _ p) (ploop x) (ploop (x ⋆ y)) (ploop y))
x P x
Deloop-elim P grpd pp ploop psq base = pp
Deloop-elim P grpd pp ploop psq (path x i) = ploop x i
Deloop-elim P grpd pp ploop psq (path-sq x y i j) = psq x y i j
Deloop-elim P grpd pp ploop psq (squash a b p q r s i j k) =
is-hlevel→is-hlevel-dep 2 grpd
(g a) (g b) (λ i g (p i)) (λ i g (q i))
(λ i j g (r i j)) (λ i j g (s i j)) (squash a b p q r s) i j k
where
g = Deloop-elim P grpd pp ploop psq
unquoteDef Deloop-elim = make-elim-with true (just 3) false false false
Deloop-elim (quote Deloop)

Deloop-elim-prop
: {ℓ'} (P : Deloop Type ℓ')
( x is-prop (P x))
P base
x P x
Deloop-elim-prop P pprop p =
Deloop-elim P
(λ x is-prop→is-hlevel-suc {n = 2} (pprop x)) p
(λ x is-prop→pathp (λ i pprop (path x i)) p p)
(λ x y is-prop→squarep (λ i j pprop (path-sq x y i j)) _ _ _ _)
unquoteDef Deloop-elim-prop = make-elim-with true (just 1) false false false
Deloop-elim-prop (quote Deloop)
```

We can then proceed to characterise the type `point ≡ x` by an
Expand Down

0 comments on commit ee70dba

Please sign in to comment.