Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Generation of LLM-friendly summary of the analysis #65

Merged
merged 5 commits into from
Jan 20, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
163 changes: 6 additions & 157 deletions notebooks/Finding interesting segments in time series.ipynb

Large diffs are not rendered by default.

863 changes: 664 additions & 199 deletions notebooks/Finding interesting segments.ipynb

Large diffs are not rendered by default.

35 changes: 14 additions & 21 deletions setup.py
Original file line number Diff line number Diff line change
@@ -1,21 +1,21 @@
from setuptools import find_packages, setup

with open('README.md') as f:
with open("README.md") as f:
long_description = f.read()

setup(
name="wise-pizza",
version="0.2.3",
description="A library to find and visualise the most interesting slices in multidimensional data",
long_description=long_description,
long_description_content_type='text/markdown',
long_description_content_type="text/markdown",
author="Wise",
url='https://github.com/transferwise/wise-pizza',
url="https://github.com/transferwise/wise-pizza",
classifiers=[
'Programming Language :: Python :: 3 :: Only',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
],
install_requires=[
"ipython",
Expand All @@ -29,27 +29,20 @@
"tqdm",
"cloudpickle",
"pivottablejs",
"streamlit==1.28.0"
"streamlit>=1.28.0",
],
extras_require={
"test": [
"flake8",
"pytest",
"pytest-cov"
],
"test": ["flake8", "pytest", "pytest-cov"],
},
packages=find_packages(
include=[
'wise_pizza',
'wise_pizza.*'
],
exclude=['tests*'],
include=["wise_pizza", "wise_pizza.*"],
exclude=["tests*"],
),
entry_points={
'console_scripts': [
'run_wise_pizza_streamlit = wise_pizza.run_streamlit_app_entry_point:main',
"console_scripts": [
"run_wise_pizza_streamlit = wise_pizza.run_streamlit_app_entry_point:main",
],
},
include_package_data=True,
keywords='wise-pizza',
keywords="wise-pizza",
)
82 changes: 82 additions & 0 deletions wise_pizza/dataframe_with_metadata.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
import logging

import pandas as pd

logger = logging.getLogger(__name__)


class DataFrameWithMetadata(pd.DataFrame):
def __init__(
self,
*args,
name: str = None,
description: str = None,
column_descriptions=None,
**kwargs,
):
super().__init__(*args, **kwargs)

self.attrs["name"] = name or "" # Store DataFrame name
self.attrs["description"] = description or "" # Store DataFrame description
self.attrs["column_descriptions"] = {}

if column_descriptions:
column_descriptions = {
k: v for k, v in column_descriptions.items() if k in self.columns
}
if column_descriptions:
self.attrs["column_descriptions"] = column_descriptions
else:
logger.warning(
"None of the column descriptions provided matched the DataFrame columns"
)

def to_markdown(self, index: bool = True, **kwargs):
# Start with DataFrame description if it exists
output = []
if self.attrs["name"]:
output.append(f"Table name: {self.attrs['name']}\n")

if self.attrs["description"]:
output.append(f"Table description: {self.attrs['description']}\n")

if not self.attrs["column_descriptions"]:
output.append(super().to_markdown(index=index, **kwargs))
return "\n".join(output)

desc_row = " | ".join(
(["---"] if index else [])
+ [self.attrs["column_descriptions"].get(col, "") for col in self.columns]
)
original_md = super().to_markdown(index=index, **kwargs)
header_end = original_md.index("\n|")
output.append(
original_md[:header_end] + "\n|" + desc_row + original_md[header_end:]
)
return "\n".join(output)

def head(self, n: int = 5):
out = DataFrameWithMetadata(super().head(n))
out.attrs = self.attrs
return out


if __name__ == "__main__":
# Usage example:
df = DataFrameWithMetadata(
{"a": [1, 2], "b": [3, 4]},
description="Description for the DataFrame",
name="DataFrame Name",
column_descriptions={
"a": "Description for column a",
"b": "Description for column b",
},
)

md = df.to_markdown()
print(md)
md2 = df.to_markdown(index=False)
print(md2)
print("yay!")
# This would raise an error:
# df = DescribedDataFrame({'a': [1]}, descriptions={'nonexistent': 'Description'})
34 changes: 34 additions & 0 deletions wise_pizza/explain.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ def explain_changes_in_average(
dims: List[str],
total_name: str,
size_name: str,
average_name: Optional[str] = None,
min_segments: Optional[int] = None,
max_segments: int = None,
min_depth: int = 1,
Expand Down Expand Up @@ -72,6 +73,7 @@ def explain_changes_in_average(
@param verbose: If set to a truish value, lots of debug info is printed to console
@return: A fitted object
"""

df1 = df1.copy()
df2 = df2.copy()

Expand Down Expand Up @@ -111,6 +113,9 @@ def explain_changes_in_average(
verbose=verbose,
)

if hasattr(df1, "attrs"):
sf.data_attrs = df1.attrs

if hasattr(sf, "pre_total"):
sf.pre_total = avg1
sf.post_total += avg1
Expand All @@ -124,6 +129,9 @@ def explain_changes_in_average(

# And might want to relabel some plots?
sf.task = "changes in average"
sf.size_name = size_name
sf.total_name = total_name
sf.average_name = average_name
return sf


Expand All @@ -133,6 +141,7 @@ def explain_changes_in_totals(
dims: List[str],
total_name: str,
size_name: str,
average_name: Optional[str] = None,
min_segments: Optional[int] = None,
max_segments: int = None,
min_depth: int = 1,
Expand Down Expand Up @@ -211,6 +220,8 @@ def explain_changes_in_totals(
cluster_values=cluster_values,
verbose=verbose,
)
if hasattr(df1, "attrs"):
sf_size.data_attrs = df1.attrs

sf_avg = explain_levels(
df=df_avg.data,
Expand All @@ -227,6 +238,9 @@ def explain_changes_in_totals(
verbose=verbose,
)

if hasattr(df1, "attrs"):
sf_avg.data_attrs = df1.attrs

sf_size.final_size = final_size
sf_avg.final_size = final_size
sp = SlicerPair(sf_size, sf_avg)
Expand Down Expand Up @@ -274,6 +288,11 @@ def explain_changes_in_totals(
return_fig=return_fig,
)
sf.task = "changes in totals"
sf.size_name = size_name
sf.total_name = total_name
sf.average_name = average_name
if hasattr(df1, "attrs"):
sf.data_attrs = df1.attrs
return sf


Expand All @@ -282,6 +301,7 @@ def explain_levels(
dims: List[str],
total_name: str,
size_name: Optional[str] = None,
average_name: Optional[str] = None,
min_segments: int = None,
max_segments: int = None,
min_depth: int = 1,
Expand Down Expand Up @@ -343,6 +363,9 @@ def explain_levels(
cluster_values=cluster_values,
)

if hasattr(df, "attrs"):
sf.data_attrs = df.attrs

for s in sf.segments:
s["naive_avg"] += average
s["total"] += average * s["seg_size"]
Expand All @@ -358,6 +381,9 @@ def explain_levels(
cluster_value_width=cluster_value_width,
)
sf.task = "levels"
sf.size_name = size_name
sf.total_name = total_name
sf.average_name = average_name
return sf


Expand All @@ -367,6 +393,7 @@ def explain_timeseries(
total_name: str,
time_name: str,
size_name: Optional[str] = None,
average_name: Optional[str] = None,
num_segments: int = None,
max_depth: int = 2,
solver: str = "tree",
Expand Down Expand Up @@ -401,6 +428,7 @@ def explain_timeseries(
assert (
solver == "tree"
), "Only the tree solver is supported for time series at the moment"
attrs = getattr(df, "attrs", None)
df = copy.copy(df)

# replace NaN values in numeric columns with zeros
Expand Down Expand Up @@ -518,6 +546,9 @@ def explain_timeseries(
n_jobs=n_jobs,
)

if hasattr(df, "attrs"):
sf.data_attrs = attrs

# TODO: insert back the normalized bits?
for s in sf.segments:
segment_def = s["segment"]
Expand Down Expand Up @@ -557,4 +588,7 @@ def explain_timeseries(
average_name=average_name,
)
sf.task = "time"
sf.size_name = size_name
sf.total_name = total_name
sf.average_name = average_name
return sf
Loading
Loading