Skip to content

tuniu0416/StableVITON

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

StableVITON: Learning Semantic Correspondence with Latent Diffusion Model for Virtual Try-On

This repository is the official implementation of StableVITON

StableVITON: Learning Semantic Correspondence with Latent Diffusion Model for Virtual Try-On
Jeongho Kim, Gyojung Gu, Minho Park, Sunghyun Park, Jaegul Choo

[Arxiv Paper]  [Website Page

teaser 

TODO List

  • Inference code
  • Release model weights
  • Training code

Environments

git clone https://github.com/rlawjdghek/StableVITON
cd StableVITON

conda create --name StableVITON python=3.10 -y
conda activate StableVITON

# install packages
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
pip install pytorch-lightning==1.5.0
pip install einops
pip install opencv-python==4.7.0.72
pip install matplotlib
pip install omegaconf
pip install transformers==4.33.2
pip install xformers==0.0.19
pip install triton==2.0.0
pip install open-clip-torch==2.19.0
pip install diffusers==0.20.2
pip install scipy==1.10.1
conda install -c anaconda ipython -y

Weights and Data

You can download the VITON-HD dataset from here.
To download the model weights, please fill the Google Form related to the consent.
The input data should include (1) agnostic-map (2) agnostic-mask (3) cloth (4) densepose. For testing VITONHD, the test dataset should be organized as follows:

test
|-- image
|-- image-densepose
|-- agnostic
|-- agnostic-mask
|-- cloth

Preprocessing

The VITON-HD dataset serves as a benchmark and provides an agnostic mask. However, you can attempt virtual try-on on arbitrary images using segmentation tools like SAM. Please note that for densepose, you should use the same densepose model as used in VITON-HD.

Inference

# paired setting
python inference.py --config_path ./configs/VITON512.yaml --batch_size 4 --model_load_path <model weight path> --save_dir <save directory>

# unpaired setting
python inference.py --config_path ./configs/VITON512.yaml --batch_size 4 --model_load_path <model weight path> --unpair --save_dir <save directory>

You can also preserve the unmasked region by '--repaint' option.

Citation

If you find our work useful for your research, please cite us:

@artical{kim2023stableviton,
    title={StableVITON: Learning Semantic Correspondence with Latent Diffusion Model for Virtual Try-On},
    author={Kim, Jeongho and Gu, Gyojung and Park, Minho and Park, Sunghyun and Choo, Jaegul},
    booktitle={arXiv preprint arxiv:2312.01725},
    year={2023}
}

Acknowledgements Sunghyun Park is the corresponding author.

License

Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.8%
  • Shell 0.2%