-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
65 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
""" | ||
This script contains a calibration of an SIR model to synthetic data. | ||
""" | ||
|
||
__author__ = "Tijs Alleman" | ||
__copyright__ = "Copyright (c) 2024 by T.W. Alleman, IDD Group, Johns Hopkins Bloomberg School of Public Health. All Rights Reserved." | ||
|
||
############################ | ||
## Load required packages ## | ||
############################ | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
###################### | ||
## Initialise model ## | ||
###################### | ||
|
||
# A model with two age groups and two spatial patches 'A' (500 inhabitants) and 'B' (5000 inhabitants). | ||
# Epidemic is seeded in location 'A'. Inhabitants of 'B' never visit 'A'. | ||
# While 20% of inhabitants of 'A' visits 'B', and has f_v % of their contacts in 'B'. | ||
|
||
coordinates = {'age': ['0-25', '25+'], # 2 age groups | ||
'location': ['A', 'B'] # 2 spatial units 'A' and 'B' | ||
} | ||
init_states = {'S': np.array([[100, 400], [1000, 4000]]), # | ||
'I': np.array([[1, 0], [0, 0]]) | ||
} | ||
params = {'beta': 0.025, # infectivity (-) | ||
'gamma': 5, # duration of infection (d) | ||
'f_v': 0.1, # fraction of total contacts on visited patch | ||
'N': np.array([[10.7, 7.9],[3.22, 14.0]]), # contact matrix (BE, Van Hoang, 2020) | ||
'M': np.array([[0.8, 0.2], [0, 1]]) # origin-destination mobility matrix | ||
} | ||
|
||
# initialize model | ||
from models import spatial_ODE_SIR | ||
model = spatial_ODE_SIR(states=init_states, parameters=params, coordinates=coordinates) | ||
|
||
########################## | ||
## Simulate & visualise ## | ||
########################## | ||
|
||
# simulate | ||
out = model.sim(90) | ||
|
||
# visualise | ||
fig,ax=plt.subplots(nrows=2, figsize=(8.3,11.7/2)) | ||
|
||
ax[0].set_title('Overall') | ||
ax[0].plot(out['time'], out['S'].sum(dim=['age', 'location']), color='green', alpha=0.8, label='S') | ||
ax[0].plot(out['time'], out['I'].sum(dim=['age', 'location']), color='red', alpha=0.8, label='I') | ||
ax[0].plot(out['time'], out['R'].sum(dim=['age', 'location']), color='black', alpha=0.8, label='R') | ||
ax[0].legend(loc=1, framealpha=1) | ||
|
||
ax[1].set_title('Infected') | ||
ax[1].plot(out['time'], out['I'].sum(dim='age').sel({'location': 'A'}), linestyle = '-', color='red', alpha=0.8, label='location A') | ||
ax[1].plot(out['time'], out['I'].sum(dim='age').sel({'location': 'B'}), linestyle = '-.', color='red', alpha=0.8, label='location B') | ||
ax[1].legend(loc=1, framealpha=1) | ||
|
||
plt.tight_layout() | ||
plt.show() | ||
plt.close() | ||
|
||
|