Skip to content

Commit

Permalink
Initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
jakobj committed Mar 24, 2021
0 parents commit 70cb947
Show file tree
Hide file tree
Showing 17 changed files with 2,419 additions and 0 deletions.
4 changes: 4 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
*.*~
*.pkl
__pycache__
*.egg-info
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2021 Computational Neuroscience, University of Bern

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
14 changes: 14 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
# dendritic-opinion-pooling
Library for models implementing the dendritic opinion pooling framework.

### Installation

Run `pip install .` from the root directory.

### Examples

See `examples/` for example applications.

### Tests

Run `pytest` from the root directory (requires [pytest](https://docs.pytest.org/en/stable/index.html)).
11 changes: 11 additions & 0 deletions dopp/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
__version__ = "0.0.1"
__maintainer__ = "Jakob Jordan"
__author__ = "Jakob Jordan"
__license__ = "MIT"
__description__ = "Library for models implementing the dendritic opinion pooling framework."
__url__ = "https://github.com/unibe-cns/dendritic-opinion-pooling"
__doc__ = f"{__description__} <{__url__}>"

from .dynamic_feedforward_cell import DynamicFeedForwardCell
from .feedforward_cell import FeedForwardCell
from .feedforward_current_cell import FeedForwardCurrentCell
242 changes: 242 additions & 0 deletions dopp/abstract_convex_cell.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,242 @@
import math
import torch


class AbstractConvexCell(torch.nn.Module):
def __init__(self, in_features_per_dendrite, out_features):
super().__init__()

self.in_features_per_dendrite = in_features_per_dendrite
self.out_features = out_features

self.EE = 0.0 # mV
self.EI = -85.0 # mV
self.gL0 = 0.166667 # nS
self.gLd = torch.ones(self.n_dendrites) * self.gL0 # nS
self.EL = -70.0 # mV
self.gc = torch.ones(self.n_dendrites) * 50000.0 * self.gL0 # nS
self.input_scale = torch.ones(self.in_features)
self.lambda_e = 1.0

self._omegaE = [
torch.nn.Parameter(
torch.zeros(
self.in_features_per_dendrite[d],
self.out_features,
dtype=torch.double,
)
)
for d in range(self.n_dendrites)
]
self._omegaI = [
torch.nn.Parameter(
torch.zeros(
self.in_features_per_dendrite[d],
self.out_features,
dtype=torch.double,
)
)
for d in range(self.n_dendrites)
]

for d in range(self.n_dendrites):
self.register_parameter(f"omegaE{d}", self._omegaE[d])
self.register_parameter(f"omegaI{d}", self._omegaI[d])

self.init_weights()

self.alpha = 1.0
theta = self.EL - 0.
self.f = (
lambda u: 1.0
/ self.alpha
* torch.nn.functional.softplus(self.alpha * (u - theta))
)
self.f_inv = (
lambda r: 1.0 / self.alpha * torch.log(torch.exp(self.alpha * r) - 1.0)
+ theta
)

@property
def in_features(self):
return sum(self.in_features_per_dendrite)

@property
def n_dendrites(self):
return len(self.in_features_per_dendrite)

@property
def min_rate(self):
return self.f(torch.DoubleTensor([self.EI])).item()

@property
def max_rate(self):
return self.f(torch.DoubleTensor([self.EE])).item()

def assert_valid_rate(self, r):
assert torch.all(self.min_rate <= r)
assert torch.all(r <= self.max_rate)

def assert_valid_conductance(self, g):
assert torch.all(0 <= g)

def assert_valid_voltage(self, v):
assert torch.all(self.EI <= v)
assert torch.all(v <= self.EE)

def weights_from_omega(self, omega):
return torch.nn.functional.softplus(omega)

def omega_from_weights(self, weights):
assert torch.all(weights >= 0.0)
return torch.log(torch.exp(weights) - 1.0)

def weightsE(self, i):
weightsEi = self.weights_from_omega(self._omegaE[i])
assert torch.all(weightsEi >= 0.0)
return weightsEi

def weightsI(self, i):
weightsIi = self.weights_from_omega(self._omegaI[i])
assert torch.all(weightsIi >= 0.0)
return weightsIi

def set_weightsE(self, d, val):
assert torch.all(val >= 0.0)
assert val.shape == self._omegaE[d].shape
self._omegaE[d].data = self.omega_from_weights(val)

def set_weightsI(self, d, val):
assert torch.all(val >= 0.0)
assert val.shape == self._omegaI[d].shape
self._omegaI[d].data = self.omega_from_weights(val)

def scale_weightsE(self, scale, d=None):
if d is None:
for d in range(self.n_dendrites):
self.set_weightsE(d, scale * self.weightsE(d))
else:
self.set_weightsE(d, scale * self.weightsE(d))

def scale_weightsI(self, scale, d=None):
if d is None:
for d in range(self.n_dendrites):
self.set_weightsI(d, scale * self.weightsI(d))
else:
self.set_weightsI(d, scale * self.weightsI(d))

def set_input_scale(self, d, val):
self.input_scale[self._input_slice(d)] = val

def init_weights(self):
scale = 0.2
for d, in_features in enumerate(self.in_features_per_dendrite):
if in_features > 0:
stdv = scale * 1.0 / math.sqrt(in_features)
initial_weightE = torch.DoubleTensor(
self.in_features_per_dendrite[d], self.out_features
).uniform_(0, stdv) * (self.EL - self.EI) / (self.EE - self.EL)
self._omegaE[d].data = self.omega_from_weights(initial_weightE)
initial_weightI = torch.DoubleTensor(
self.in_features_per_dendrite[d], self.out_features
).uniform_(0, stdv)
self._omegaI[d].data = self.omega_from_weights(initial_weightI)

def _input_slice(self, d):
if d == 0:
return slice(0, self.in_features_per_dendrite[0])
else:
return slice(
sum(self.in_features_per_dendrite[:d]),
sum(self.in_features_per_dendrite[: d + 1]),
)

def dendritic_input(self, u_in, d):
r_in = self.input_scale * self.f(u_in)
return r_in[:, self._input_slice(d)]

def forward(self, u_in):

self.assert_valid_voltage(u_in)
assert u_in.shape[1] == self.in_features

g0, u0 = self._forward(u_in)

if g0 is not None:
self.assert_valid_conductance(g0)
self.assert_valid_voltage(u0)
return g0, u0

def copy_omegaE_omegaI_from(self, other):
assert self.n_dendrites == other.n_dendrites

for d in range(self.n_dendrites):
self._omegaE[d].data = other._omegaE[d].data.clone()
self._omegaI[d].data = other._omegaI[d].data.clone()

def compute_gff0_and_uff0(self):
gff0 = torch.ones(1, self.out_features, dtype=torch.double) * self.gL0
uff0 = torch.ones(1, self.out_features, dtype=torch.double) * self.EL

self.assert_valid_conductance(gff0)
self.assert_valid_voltage(uff0)
return gff0, uff0

def compute_gEd_gId(self, u_in, d):
gEd = torch.mm(self.dendritic_input(u_in, d), self.weightsE(d))
gId = torch.mm(self.dendritic_input(u_in, d), self.weightsI(d))
self.assert_valid_conductance(gEd)
self.assert_valid_conductance(gId)

return gEd, gId

def compute_gffd_and_uffd(self, u_in):
gffd = torch.empty(len(u_in), self.out_features, self.n_dendrites, dtype=torch.double)
uffd = torch.empty(len(u_in), self.out_features, self.n_dendrites, dtype=torch.double)

assert len(self.gLd) == self.n_dendrites

for d in range(self.n_dendrites):
gEd, gId = self.compute_gEd_gId(u_in, d)
gffd[:, :, d] = self.gLd[d] + gEd + gId
# need to use cloned gffd to avoid pytorch
# inplace-modification error when calling backward() when
# training with backprop
uffd[:, :, d] = (
self.gLd[d] * self.EL + gEd * self.EE + gId * self.EI
) / gffd[:, :, d].clone()

self.assert_valid_conductance(gffd)
self.assert_valid_voltage(uffd)
return gffd, uffd

def compute_Iffd(self, u_in):
Iffd = torch.empty(len(u_in), self.out_features, self.n_dendrites, dtype=torch.double)

for d in range(self.n_dendrites):
gEd, gId = self.compute_gEd_gId(u_in, d)
Iffd[:, :, d] = gEd - gId

return Iffd

def sample(self, g0, u0):
raise NotImplementedError()

def _forward(self, u_in):
raise NotImplementedError()

def energy_target(self, u0_target, g0, u0):
raise NotImplementedError()

def loss_target(self, u0_target, g0, u0):
raise NotImplementedError()

def compute_grad_manual_target(self, u0_target, g0, u0, u_in):
raise NotImplementedError()

def apply_grad_weights(self, lr):
for d in range(self.n_dendrites):
self._omegaE[d].data -= lr * self._omegaE[d]._grad
assert torch.all(self.weightsE(d) > 0.0)
self._omegaI[d].data -= lr * self._omegaI[d]._grad
assert torch.all(self.weightsI(d) > 0.0)
35 changes: 35 additions & 0 deletions dopp/dynamic_feedforward_cell.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
from scipy.integrate import solve_ivp
import torch

from .feedforward_cell import FeedForwardCell


class DynamicFeedForwardCell(FeedForwardCell):
def __init__(self, in_features_per_dendrite, out_features):
super().__init__(in_features_per_dendrite, out_features)

self.dt = 0.5 # ms
self.cm0 = 250.0 # pF

self.u0 = torch.ones(1, self.out_features) * self.EL

def _forward(self, u_in):

assert len(u_in) == 1, "batch size larger than one not supported"

gff0, uff0 = self.compute_gff0_and_uff0()
gffd, uffd = self.compute_gffd_and_uffd(u_in)
g0, u0 = self._compute_g0_and_u0(gff0, uff0, gffd, uffd)

def rhs(t, u):
return (g0[0].numpy() * (u0[0].numpy() - u)) * 1.0 / self.cm0

res_ivp = solve_ivp(
rhs, (0.0, self.dt), self.u0[0].numpy(), method="RK23", max_step=self.dt
).y[:, -1]

self.u0[0] = torch.Tensor(res_ivp)
return g0, self.u0

def initialize_somatic_potential(self, u):
self.u0[0, :] = u
Loading

0 comments on commit 70cb947

Please sign in to comment.