Skip to content

valohai/valohai-utils

Repository files navigation

valohai-utils

Python helper library for the Valohai machine learning platform.

Install

pip install valohai-utils

Execution

Run locally

python mycode.py

Run in the cloud

vh yaml step mycode.py
vh exec run -a mystep

What does valohai-utils do?

  • Generates and updates the valohai.yaml configuration file based on the source code
  • Agnostic input handling (single file, multiple files, zip, tar)
  • Parse command-line parameters
  • Compress outputs
  • Download inputs for local experiments
  • Straightforward way to print metrics as Valohai metadata
  • Code parity between local vs. cloud

Parameters

Valohai parameters are variables & hyper-parameters that are parsed from the command-line. You define parameters in a dictionary:

default_parameters = {
    'iterations': 100,
    'learning_rate': 0.001
}

The dictionary is fed to valohai.prepare() method:

The values given are default values. You can override them from the command-line or using the Valohai web UI.

Example

import valohai

default_parameters = {
    'iterations': 10,
}

valohai.prepare(step="helloworld", default_parameters=default_parameters)

for i in range(valohai.parameters('iterations').value):
    print("Iteration %s" % i)

Inputs

Valohai inputs are the data files required by the experiment. They are automatically downloaded for you, if the data is from a public source. You define inputs with a dictionary:

default_inputs = {
    'input_name': 'http://example.com/1.png'
}

An input can also be a list of URLs or a folder:

default_inputs = {
    'input_name': [
        'http://example.com/1.png',
        'http://example.com/2.png'
    ],
    'input_folder': [
        's3://mybucket/images/*',
        'azure://mycontainer/images/*',
        'gs://mybucket/images/*'
    ]
}

Or it can be an archive full of files (uncompressed automagically on-demand):

default_inputs = {
    'images': 'http://example.com/myimages.zip'
}

The dictionary is fed to valohai.prepare() method.

The url(s) given are defaults. You can override them from the command-line or using the Valohai web UI.

Example

import csv
import valohai

default_inputs = {
    'myinput': 'https://pokemon-images-example.s3-eu-west-1.amazonaws.com/pokemon.csv'
}

valohai.prepare(step="test", default_inputs=default_inputs)

with open(valohai.inputs("myinput").path()) as csv_file:
    reader = csv.reader(csv_file, delimiter=',')

Outputs

Valohai outputs are the files that your step produces an end result.

When you are ready to save your output file, you can query for the correct path from the valohai-utils.

Example

image = Image.open(in_path)
new_image = image.resize((width, height))
out_path = valohai.outputs('resized').path('resized_image.png')
new_image.save(out_path)

Sometimes there are so many outputs that you may want to compress them into a single file.

In this case, once you have all your outputs saved, you can finalize the output with the compress() method.

Example

valohai.outputs('resized').compress("*.png", "images.zip", remove_originals=True)

Logging

You can log metrics using the Valohai metadata system and then render interactive graphs on the web interface. The valohai-utils logger will print JSON logs that Valohai will parse as metadata.

It is important for visualization that logs for single epoch are flushed out as a single JSON object.

Example

import valohai

for epoch in range(100):
    with valohai.metadata.logger() as logger:
        logger.log("epoch", epoch)
        logger.log("accuracy", accuracy)
        logger.log("loss", loss)

Example 2

import valohai

logger = valohai.logger()
for epoch in range(100):
    logger.log("epoch", epoch)
    logger.log("accuracy", accuracy)
    logger.log("loss", loss)
    logger.flush()

Execution Info

valohai.execution contains information about the current execution context.

import valohai

execution_config = valohai.execution().config
print(f"Execution ID: {execution_config.id}")
print(f"Execution title: {execution_config.title}")
print(f"Execution counter: {execution_config.counter}")

Distributed Workloads

valohai.distributed contains a toolset for running distributed tasks on Valohai.

import valohai

if valohai.distributed.is_distributed_task():

    # `master()` reports the same worker on all contexts
    master = valohai.distributed.master()
    master_url = f'tcp://{master.primary_local_ip}:1234'

    # `members()` contains all workers in the distributed task
    member_public_ips = ",".join([
        m.primary_public_ip
        for m
        in valohai.distributed.members()
    ])

    # `me()` has full details about the current worker context
    details = valohai.distributed.me()

    size = valohai.distributed.required_count
    rank = valohai.distributed.rank  # 0, 1, 2, etc. depending on run context

Full example

Preprocess step for resizing image files

This example step will do the following:

  1. Take image files (or an archive containing images) as input.
  2. Resize each image to the size provided by the width & height parameters.
  3. Compress the resized images into resized/images.zip Valohai output file.
import os
import valohai
from PIL import Image

default_parameters = {
    "width": 640,
    "height": 480,
}
default_inputs = {
    "images": [
        "https://dist.valohai.com/valohai-utils-tests/Example.jpg",
        "https://dist.valohai.com/valohai-utils-tests/planeshark.jpg",
    ],
}

valohai.prepare(step="resize", default_parameters=default_parameters, default_inputs=default_inputs)


def resize_image(in_path, out_path, width, height, logger):
    image = Image.open(in_path)
    logger.log("from_width", image.size[0])
    logger.log("from_height", image.size[1])
    logger.log("to_width", width)
    logger.log("to_height", height)
    new_image = image.resize((width, height))
    new_image.save(out_path)


if __name__ == '__main__':
    for image_path in valohai.inputs('images').paths():
        with valohai.metadata.logger() as logger:
            filename = os.path.basename(image_path)
            resize_image(
                in_path=image_path,
                out_path=valohai.outputs('resized').path(filename),
                width=valohai.parameters('width').value,
                height=valohai.parameters('height').value,
                logger=logger
            )
    valohai.outputs('resized').compress("*", "images.zip", remove_originals=True)

CLI command:

vh yaml step resize.py

Will produce this valohai.yaml config:

- step:
    name: resize
    image: python:3.11-slim
    command: python ./resize.py {parameters}
    parameters:
      - name: width
        default: 640
        multiple-separator: ","
        optional: false
        type: integer
      - name: height
        default: 480
        multiple-separator: ","
        optional: false
        type: integer
    inputs:
      - name: images
        default:
          - https://dist.valohai.com/valohai-utils-tests/Example.jpg
          - https://dist.valohai.com/valohai-utils-tests/planeshark.jpg
        optional: false

Configuration

There are some environment variables that affect how valohai-utils works when not running within a Valohai execution context.

  • VH_FLAT_LOCAL_OUTPUTS
    • If set, flattens the local outputs directory structure into a single directory. This means that outputs from subsequent runs can clobber old files.

Development

If you wish to further develop valohai-utils, remember to install development dependencies and write tests for your additions.

Linting

Lints are run via pre-commit.

If you want pre-commit to check your commits via git hooks,

pip install pre-commit
pre-commit install

You can also run the lints manually with pre-commit run --all-files.

Testing

pip install -e . -r requirements-dev.txt
pytest