Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Remove
TraceableMistralForCausalLM
(#1052)
## Purpose ## * Remove changes to `MistralForCausalLM` which was thought to be needed for Pixtral, but is not ## Changes ## * Remove `TraceableMistralForCausalLM` * Remove `TraceableMistralForCausalLM`'s use in `LlavaForConditionalGeneration` * Remove some unneeded imports in `src/llmcompressor/transformers/tracing/llava.py` ## Testing ## * Ran `examples/multimodal_vision/llava_example.py` to completion * Ran `examples/multimodal_vision/pixtral_example.py` to completion * Ran `mixtral_example.py` to completion * `grep -r 'TraceableMistralForCausalLM' src/ examples/ tests/` * `grep -r 'TraceableLlavaForConditionalGeneration' src/ examples/ tests/` <details><summary>mixtral_example.py</summary> ```python3 from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers import oneshot from llmcompressor.transformers.compression.helpers import calculate_offload_device_map # Select model and load it. MODEL_ID = "mistralai/Mixtral-8x7B-Instruct-v0.1" NUM_GPUS = 1 device_map = calculate_offload_device_map( MODEL_ID, reserve_for_hessians=True, num_gpus=NUM_GPUS, torch_dtype="auto" ) model = AutoModelForCausalLM.from_pretrained( MODEL_ID, device_map=device_map, torch_dtype="auto", ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) # Select calibration dataset. DATASET_ID = "HuggingFaceH4/ultrachat_200k" DATASET_SPLIT = "train_sft" # Select number of samples. 512 samples is a good place to start. # Increasing the number of samples can improve accuracy. NUM_CALIBRATION_SAMPLES = 512 MAX_SEQUENCE_LENGTH = 2048 # Load dataset and preprocess. ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) def preprocess(example): return { "text": tokenizer.apply_chat_template( example["messages"], tokenize=False, ) } ds = ds.map(preprocess) # Tokenize inputs. def tokenize(sample): return tokenizer( sample["text"], padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False, ) ds = ds.map(tokenize, remove_columns=ds.column_names) # Configure the quantization algorithm to run. # * quantize the weights to 4 bit with GPTQ with a group size 128 recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"]) # Apply algorithms. oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, ) # Confirm generations of the quantized model look sane. print("\n\n") print("========== SAMPLE GENERATION ==============") input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") output = model.generate(input_ids, max_new_tokens=100) print(tokenizer.decode(output[0])) print("==========================================\n\n") # Save to disk compressed. SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128" model.save_pretrained(SAVE_DIR, save_compressed=True) tokenizer.save_pretrained(SAVE_DIR) ``` </details> Signed-off-by: Kyle Sayers <[email protected]> Co-authored-by: Michael Goin <[email protected]>
- Loading branch information