The goal of our project is to identify the water bodies of water using semantic segmentation of satellite images.
Create a virtual environment and install the packages listed in requirements.txt file. If using GPUs you will need to install cudnn/8.2.0,cuda/11.1.1,gcc/10.2
preprocessing.py
- converts the satellite images to a format that can be used by the model.hyperparameters.py
- the ideal hyperparameters for the model.main.py
- contains the actual model, training and testing implementation, and visualisation.
Our entire dataset TestImages, TestLabels, TrainingImages, TrainingLabels
and best checkpoint.hdf5
available via this Google Drive Link.
The `main.py` accepts the following commandline arguments:
optional arguments:
-h, --help show this help message and exit
--skip_train If true, skips training. (default: False)
--augment_data If true, uses data augmentation during training.
(default: False)
--load_checkpoint LOAD_CHECKPOINT
Path to model checkpoint (.hdf5 file) (default: None)
--show_example If true, shows example output in comparison to
expected output. (default: False)
--save_results If true, saves trained model outputs for images in
training/test set. (default: False)