-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit b2081b5
Showing
8 changed files
with
250 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
# yolov8-mnn |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
cmake_minimum_required(VERSION 3.0) | ||
project(mobilenet_demo) | ||
|
||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11") | ||
|
||
# include dir | ||
include_directories(${CMAKE_CURRENT_LIST_DIR}/include/) | ||
|
||
# libs dir | ||
link_directories(${CMAKE_CURRENT_LIST_DIR}/libs) | ||
|
||
# source files | ||
FILE(GLOB SRCS ${CMAKE_CURRENT_LIST_DIR}/yolov8_demo.cpp) | ||
|
||
# target | ||
add_executable(yolov8_demo ${SRCS}) | ||
|
||
# link | ||
if (MSVC) | ||
target_link_libraries(yolov8_demo MNN) | ||
else() | ||
target_link_libraries(yolov8_demo MNN MNN_Express MNNOpenCV) | ||
endif() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
# Usage | ||
|
||
## Compile MNN library | ||
### Linx/Mac | ||
```bash | ||
git clone https://github.com/alibaba/MNN.git | ||
cd MNN | ||
# copy header file | ||
cp -r include /path/to/MNNExample/mobilenet/cpp | ||
cp -r tools/cv/include /path/to/MNNExample/yolov8/cpp | ||
mkdir build | ||
cmake -DMNN_BUILD_OPENCV=ON -DMNN_IMGCODECS=ON .. | ||
make -j8 | ||
cp libMNN.so express/libMNN_Express.so tools/cv/libMNNOpenCV.so /path/to/MNNExample/yolov8/cpp/libs | ||
``` | ||
|
||
### Windows | ||
```bash | ||
# Visual Studio xxxx Developer Command Prompt | ||
powershell | ||
git clone https://github.com/alibaba/MNN.git | ||
cd MNN | ||
# copy header file | ||
cp -r include /path/to/MNNExample/mobilenet/cpp | ||
cp -r tools/cv/include /path/to/MNNExample/yolov8/cpp | ||
mkdir build | ||
cmake -G "Ninja" -DMNN_BUILD_OPENCV=ON -DMNN_IMGCODECS=ON .. | ||
ninja | ||
cp MNN.dll MNN.lib /path/to/MNNExample/yolov8/cpp/build | ||
``` | ||
|
||
## Build and Run | ||
|
||
#### Linux/Mac | ||
```bash | ||
mkdir build && cd build | ||
cmake .. | ||
make -j4 | ||
./yolov8_demo yolov8n.mnn test.jpg | ||
``` | ||
#### Windows | ||
```bash | ||
# Visual Studio xxxx Developer Command Prompt | ||
powershell | ||
mkdir build && cd build | ||
cmake -G "Ninja" .. | ||
ninja | ||
./yolov8_demo yolov8n.mnn test.jpg | ||
``` |
Empty file.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
#include <stdio.h> | ||
#include <MNN/ImageProcess.hpp> | ||
#include <MNN/expr/Module.hpp> | ||
#include <MNN/expr/Executor.hpp> | ||
#include <MNN/expr/ExprCreator.hpp> | ||
#include <MNN/expr/Executor.hpp> | ||
|
||
#include <cv/cv.hpp> | ||
|
||
using namespace MNN; | ||
using namespace MNN::Express; | ||
using namespace MNN::CV; | ||
|
||
int main(int argc, const char* argv[]) { | ||
if (argc < 3) { | ||
MNN_PRINT("Usage: ./yolov8_demo.out model.mnn input.jpg [forwardType] [precision] [thread]\n"); | ||
return 0; | ||
} | ||
int thread = 4; | ||
int precision = 0; | ||
int forwardType = MNN_FORWARD_CPU; | ||
if (argc >= 4) { | ||
forwardType = atoi(argv[3]); | ||
} | ||
if (argc >= 5) { | ||
precision = atoi(argv[4]); | ||
} | ||
if (argc >= 6) { | ||
thread = atoi(argv[5]); | ||
} | ||
MNN::ScheduleConfig sConfig; | ||
sConfig.type = static_cast<MNNForwardType>(forwardType); | ||
sConfig.numThread = thread; | ||
BackendConfig bConfig; | ||
bConfig.precision = static_cast<BackendConfig::PrecisionMode>(precision); | ||
sConfig.backendConfig = &bConfig; | ||
std::shared_ptr<Executor::RuntimeManager> rtmgr = std::shared_ptr<Executor::RuntimeManager>(Executor::RuntimeManager::createRuntimeManager(sConfig)); | ||
if(rtmgr == nullptr) { | ||
MNN_ERROR("Empty RuntimeManger\n"); | ||
return 0; | ||
} | ||
rtmgr->setCache(".cachefile"); | ||
|
||
std::shared_ptr<Module> net(Module::load(std::vector<std::string>{}, std::vector<std::string>{}, argv[1], rtmgr)); | ||
auto original_image = imread(argv[2]); | ||
auto dims = original_image->getInfo()->dim; | ||
int ih = dims[0]; | ||
int iw = dims[1]; | ||
int len = ih > iw ? ih : iw; | ||
float scale = len / 640.0; | ||
std::vector<int> padvals { 0, len - ih, 0, len - iw, 0, 0 }; | ||
auto pads = _Const(static_cast<void*>(padvals.data()), {3, 2}, NCHW, halide_type_of<int>()); | ||
auto image = _Pad(original_image, pads, CONSTANT); | ||
image = resize(image, Size(640, 640), 0, 0, INTER_LINEAR, -1, {0., 0., 0.}, {1./255., 1./255., 1./255.}); | ||
auto input = _Unsqueeze(image, {0}); | ||
input = _Convert(input, NC4HW4); | ||
auto outputs = net->onForward({input}); | ||
auto output = _Convert(outputs[0], NCHW); | ||
output = _Squeeze(output); | ||
// output shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80] | ||
auto cx = _Gather(output, _Scalar<int>(0)); | ||
auto cy = _Gather(output, _Scalar<int>(1)); | ||
auto w = _Gather(output, _Scalar<int>(2)); | ||
auto h = _Gather(output, _Scalar<int>(3)); | ||
std::vector<int> startvals { 4, 0 }; | ||
auto start = _Const(static_cast<void*>(startvals.data()), {2}, NCHW, halide_type_of<int>()); | ||
std::vector<int> sizevals { -1, -1 }; | ||
auto size = _Const(static_cast<void*>(sizevals.data()), {2}, NCHW, halide_type_of<int>()); | ||
auto probs = _Slice(output, start, size); | ||
// [cx, cy, w, h] -> [y0, x0, y1, x1] | ||
auto x0 = cx - w * _Const(0.5); | ||
auto y0 = cy - h * _Const(0.5); | ||
auto x1 = cx + w * _Const(0.5); | ||
auto y1 = cy + h * _Const(0.5); | ||
auto boxes = _Stack({x0, y0, x1, y1}, 1); | ||
auto scores = _ReduceMax(probs, {0}); | ||
auto ids = _ArgMax(probs, 0); | ||
auto result_ids = _Nms(boxes, scores, 100, 0.45, 0.25); | ||
auto result_ptr = result_ids->readMap<int>(); | ||
auto box_ptr = boxes->readMap<float>(); | ||
auto ids_ptr = ids->readMap<float>(); | ||
auto score_ptr = scores->readMap<float>(); | ||
for (int i = 0; i < 100; i++) { | ||
auto idx = result_ptr[i]; | ||
if (idx < 0) break; | ||
auto x0 = box_ptr[idx * 4 + 0] * scale; | ||
auto y0 = box_ptr[idx * 4 + 1] * scale; | ||
auto x1 = box_ptr[idx * 4 + 2] * scale; | ||
auto y1 = box_ptr[idx * 4 + 3] * scale; | ||
auto class_idx = ids_ptr[idx]; | ||
auto score = score_ptr[idx]; | ||
printf("### box: {%f, %f, %f, %f}, class_idx: %d, score: %f\n", x0, y0, x1, y1, idx, score); | ||
rectangle(original_image, {x0, y0}, {x1, y1}, {0, 0, 255}, 2); | ||
} | ||
if (imwrite("res.jpg", original_image)) { | ||
MNN_PRINT("result image write to `res.jpg`.\n"); | ||
} | ||
rtmgr->updateCache(); | ||
return 0; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
# Usage | ||
|
||
## Install MNN | ||
``` | ||
pip install MNN | ||
``` | ||
|
||
## Run Demo | ||
``` | ||
python yolov8_example.py --model yolov8n.mnn --img test.jpg | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
#-- coding:utf8 -- | ||
import argparse | ||
|
||
import MNN | ||
import MNN.numpy as np | ||
import MNN.cv as cv2 | ||
|
||
def inference(model, img, precision, backend, thread): | ||
config = {} | ||
config['precision'] = precision | ||
config['backend'] = backend | ||
config['numThread'] = thread | ||
rt = MNN.nn.create_runtime_manager((config,)) | ||
# net = MNN.nn.load_module_from_file(model, ['images'], ['output0'], runtime_manager=rt) | ||
net = MNN.nn.load_module_from_file(model, [], [], runtime_manager=rt) | ||
original_image = cv2.imread(img) | ||
ih, iw, _ = original_image.shape | ||
length = max((ih, iw)) | ||
scale = length / 640 | ||
image = np.pad(original_image, [[0, length - ih], [0, length - iw], [0, 0]], 'constant') | ||
image = cv2.resize(image, (640, 640), 0., 0., cv2.INTER_LINEAR, -1, [0., 0., 0.], [1./255., 1./255., 1./255.]) | ||
input_var = np.expand_dims(image, 0) | ||
input_var = MNN.expr.convert(input_var, MNN.expr.NC4HW4) | ||
output_var = net.forward(input_var) | ||
output_var = MNN.expr.convert(output_var, MNN.expr.NCHW) | ||
output_var = output_var.squeeze() | ||
# output_var shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80] | ||
cx = output_var[0] | ||
cy = output_var[1] | ||
w = output_var[2] | ||
h = output_var[3] | ||
probs = output_var[4:] | ||
# [cx, cy, w, h] -> [y0, x0, y1, x1] | ||
x0 = cx - w * 0.5 | ||
y0 = cy - h * 0.5 | ||
x1 = cx + w * 0.5 | ||
y1 = cy + h * 0.5 | ||
boxes = np.stack([x0, y0, x1, y1], axis=1) | ||
# get max prob and idx | ||
scores = np.max(probs, 0) | ||
class_ids = np.argmax(probs, 0) | ||
result_ids = MNN.expr.nms(boxes, scores, 100, 0.45, 0.25) | ||
print(result_ids.shape) | ||
# nms result box, score, ids | ||
result_boxes = boxes[result_ids] | ||
result_scores = scores[result_ids] | ||
result_class_ids = class_ids[result_ids] | ||
for i in range(len(result_boxes)): | ||
x0, y0, x1, y1 = result_boxes[i].read_as_tuple() | ||
y0 = int(y0 * scale) | ||
y1 = int(y1 * scale) | ||
x0 = int(x0 * scale) | ||
x1 = int(x1 * scale) | ||
print(result_class_ids[i]) | ||
cv2.rectangle(original_image, (x0, y0), (x1, y1), (0, 0, 255), 2) | ||
cv2.imwrite('res.jpg', original_image) | ||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--model', type=str, required=True, help='the mobilenet model path') | ||
parser.add_argument('--img', type=str, required=True, help='the input image path') | ||
parser.add_argument('--precision', type=str, default='normal', help='inference precision: normal, low, high, lowBF') | ||
parser.add_argument('--backend', type=str, default='CPU', help='inference backend: CPU, OPENCL, OPENGL, NN, VULKAN, METAL, TRT, CUDA, HIAI') | ||
parser.add_argument('--thread', type=int, default=4, help='inference using thread: int') | ||
args = parser.parse_args() | ||
inference(args.model, args.img, args.precision, args.backend, args.thread) |