Skip to content

Awesome weakly-supervised image semantic segmentation;scribble supervision,bounding box supervision, point supervision, image-level class supervision

Notifications You must be signed in to change notification settings

whiterAutumn/awesome-weakly-supervised-semantic-segmentation-image

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 

Repository files navigation

Awesome Weakly-supervised Semantic Segmentation (Image)


Contact me if any paper is missed!


1. Performance

1.1. Results on PASCAL VOC 2012 dataset

  • For each method, I will provide the name of baseline in brackets if it has.
  • Sup.: I-image-level class label, B-bounding box label, S-scribble label, P-point label.
  • Bac. C: Method for generating pseudo label, or backbone of the classification network.
  • Arc. S: backbone and method of the segmentation network.
  • Pre.s : The dataset used to pre-train the segmentation network, "I" denotes ImageNet, "C" denotes COCO. Note that many works use COCO pre-trained DeepLab model but not mentioned in the paper.
  • For methods that use multiple backbones, I only reports the results of ResNet101.
  • "-" indicates no fully-supervised model is utilized, "?" indicates the corresponding item is not mentioned in the paper.
Method Pub. Bac. C Arc. S Sup. Extra data Pre.S val test
SEC ECCV16 VGG16 VGG16 DeepLabv1 I Saliency I 50.7 51.7
DSRG (SEC) CVPR18 VGG16 ResNet101 DeepLabv2 I Saliency I 61.4 63.2
AISI ECCV18 ResNet101 ResNet101 DeepLabv2 I Saliency ? 63.6 64.5
Ficklenet (DSRG) CVPR19 VGG16 ResNet101 DeepLabv2 I Instance-level Saliency I 64.9 65.3
AISI ECCV18 ResNet101 ResNet101 DeepLabv2 I Instance-level Saliency
24KImageNet
? 64.5 65.6
OAA ICCV19 VGG16 ResNet101 DeepLabv1 I Saliency I 65.2 66.4
Zhang et al. ECCV20 ResNet50 ResNet50 DeepLabv2 I Saliency ? 66.6 66.7
Fan et al. ECCV20 ResNet38 ResNet101 DeepLabv1 I Saliency ? 67.2 66.7
MCIS ECCV20 VGG16 ResNet101 DeepLabv1 I Saliency ? 66.2 66.9
Lee et al. ICCV19 VGG16 ResNet101 DeepLabv2 I Saliency Web I 66.5 67.4
LIID PAMI20 ResNet50 ResNet101 DeepLabv2 I Saliency ? 66.5 67.5
MCIS ECCV20 VGG16 ResNet101 DeepLabv1 I Saliency Web ? 67.7 67.5
ICD CVPR20 VGG16 ResNet101 DeepLabv1 I Saliency ? 67.8 68.0
LIID PAMI20 ResNet50 ResNet101 DeepLabv2 I Saliency
24KImageNet
? 67.8 68.3
Li et al. AAAI21 ResNet101 ResNet101 DeepLabv2 I Saliency ? 68.2 68.5
Yao et al. CVPR21 VGG16 ResNet101 DeepLabv2 I Saliency I 68.3 68.5
AuxSegNet ICCV21 ResNet38 - I Saliency ? 69.0 68.6
SPML (Ficklenet) ICLR21 VGG16 ResNet101 DeepLabv2 I Saliency I 69.5 71.6
Yao et al. CVPR21 VGG16 ResNet101 DeepLabv2 I Saliency I+C 70.4 70.2
EDAM CVPR21 ResNet38 ResNet101 DeepLabv2 I Saliency ? 70.9 70.6
DRS AAAI21 VGG16 ResNet101 DeepLabv2 I Saliency ? 71.2 71.4
AffinityNet CVPR18 ResNet38 ResNet38 I - ? 61.7 63.7
ICD CVPR20 VGG16 ResNet101 DeepLabv1 I - ? 64.1 64.3
IRN CVPR19 ResNet50 ResNet50 DeepLabv2 I - I 63.5 64.8
IAL IJCV20 ResNet? ResNet? I - I 64.3 65.4
SSDD (PSA) ICCV19 ResNet38 ResNet38 I - I 64.9 65.5
SEAM CVPR20 ResNet38 ResNet38 DeepLabv2 I - I 64.5 65.7
Chang et al. CVPR20 ResNet38 ResNet101 DeepLabv2 I - ? 66.1 65.9
RRM AAAI20 ResNet38 ResNet101 DeepLabv2 I - ? 66.3 66.5
BES ECCV20 ResNet50 ResNet101 DeepLabv2 I - ? 65.7 66.6
CONTA (+SEAM) NeurIPS20 ResNet38 ResNet101 DeepLabv2 I - ? 66.1 66.7
Ru et al. IJCAI21 ResNet101 ResNet101 DeepLabv2 I - ? 67.2 67.3
WSGCN (IRN) ICME21 ResNet50 ResNet101 DeepLabv2 I - I 66.7 68.8
CPN ICCV21 ResNet38 ResNet38 DeepLabv1 I - ? 67.8 68.5
RPNet arxiv21 ResNet101 ResNet50 DeepLabv2 I - I 68.0 68.2
AdvCAM CVPR21 ResNet50 ResNet101 DeepLabv2 I - I 68.1 68.0
WSGCN (IRN) ICME21 ResNet50 ResNet101 DeepLabv2 I - I+C 68.7 69.3
BBAM CVPR21 ? ResNet101 DeepLabv2 B MCG I 73.7 73.7
WSSL ICCV15 - VGG16 DeepLabv1 B - I 60.6 62.2
Song et al. CVPR19 - ResNet101 DeepLabv1 B - I 70.2 -
SPML (Song et al.) ICLR21 - ResNet101 DeepLabv2 B - I 73.5 74.7
Oh et al. CVPR21 ResNet101 ResNet101 DeepLabv2 B - I+C 74.6 76.1
Scribblesup S
NormalCut CVPR18 - ResNet101 DeepLabv1 S Saliency ? 74.5 -
KernelCut ECCV18 - ResNet101 DeepLabv1 S - ? 75.0 -
BPG IJCAI19 - ResNet101 DeepLabv2 S - ? 76.0 -
SPML (KernelCut) ICLR21 - ResNet101 DeepLabv2 S - I 76.1 -
A2GNN TPAMI21 - ? S - ? 76.2 76.1
DFR arxiv21 - UperNet+Swin Transformer S 22KImageNet - 82.8 82.9
WhatsPoint ECCV16 - VGG16 FCN P Objectness I 46.1 -
PCAM arxiv20 ResNet50 DeepLabv3+ P - ? 70.5 -

1.2. Results on MS-COCO dataset

TODO

2. Paper List

2.1. supervised by image tags (I)

2021

  • SPML: "Universal Weakly Supervised Segmentation by Pixel-to-Segment Contrastive Learning" ICLR2021
  • Li et al.: "Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation" AAAI2021
  • DRS: "Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation" AAAI2021
  • AdvCAM: " Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation" CVPR2021
  • **Yao et al. **: "Non-Salient Region Object Mining for Weakly Supervised Semantic Segmentation" CVPR2021
  • EDAM: "Embedded Discriminative Attention Mechanism for Weakly Supervised Semantic Segmentation" CVPR2021
  • WSGCN: "Weakly-Supervised Image Semantic Segmentation Using Graph Convolutional Networks" ICME2021
  • PuzzleCAM: "Puzzle-CAM Improved localization via matching partial and full features" 2021arXiv
  • CDA: "Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation" 2021arXiv
  • Ru et al.: "Learning Visual Words for Weakly-Supervised Semantic Segmentation" IJCAI2021
  • AuxSegNet: "Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised Semantic Segmentation" ICCV2021
  • CPN: "Complementary Patch for Weakly Supervised Semantic Segmentation" ICCV2021
  • RPNet: "Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation" arxiv2021
  • Method: "" 2021

2020

  • RRM: "Reliability Does Matter An End-to-End Weakly Supervised Semantic Segmentation Approach" AAAI2020
  • IAL: "Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning" IJCV2020
  • SEAM: "Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation" CVPR2020
  • Chang et al.: "Weakly-Supervised Semantic Segmentation via Sub-category Exploration" CVPR2020
  • ICD: "Learning Integral Objects with Intra-Class Discriminator for Weakly-Supervised Semantic Segmentation" CVPR2020
  • Fan et al.: "Employing multi-estimations for weakly-supervised semantic segmentation" ECCV2020
  • MCIS: "Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation" 2020
  • BES: "Weakly Supervised Semantic Segmentation with Boundary Exploration" ECCV2020
  • CONTA: "Causal intervention for weakly-supervised semantic segmentation" NeurIPS2020
  • Method: "Find it if You Can: End-to-End Adversarial Erasing for Weakly-Supervised Semantic Segmentation" 2020arXiv
  • Zhang et al.: "Splitting vs. Merging: Mining Object Regions with Discrepancy and Intersection Loss for Weakly Supervised Semantic Segmentation" ECCV2020

2019

  • IRN: "Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations" CVPR2019
  • Ficklenet: " Ficklenet: Weakly and semi-supervised semantic image segmentation using stochastic inference" CVPR2019
  • Lee et al.: "Frame-to-Frame Aggregation of Active Regions in Web Videos for Weakly Supervised Semantic Segmentation" ICCV2019
  • OAA: "Integral Object Mining via Online Attention Accumulation" ICCV2019
  • SSDD: "Self-supervised difference detection for weakly-supervised semantic segmentation" ICCV2019

2018

  • DSRG: "Weakly-supervised semantic segmentation network with deep seeded region growing" CVPR2018
  • AffinityNet: "Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation" CVPR2018
  • GAIN: " Tell me where to look: Guided attention inference network" CVPR2018
  • AISI: "Associating inter-image salient instances for weakly supervised semantic segmentation" ECCV2018
  • SeeNet: "Self-Erasing Network for Integral Object Attention" NeurIPS2018
  • Method: "" 2018

2017

  • CrawlSeg: "Weakly Supervised Semantic Segmentation using Web-Crawled Videos" CVPR2017
  • WebS-i2: "Webly supervised semantic segmentation" CVPR2017
  • Oh et al.: "Exploiting saliency for object segmentation from image level labels" CVPR2017
  • TPL: "Two-phase learning for weakly supervised object localization" ICCV2017

2016

  • SEC: "Seed, expand and constrain: Three principles for weakly-supervised image segmentation" ECCV2016
  • AF-SS: "Augmented Feedback in Semantic Segmentation under Image Level Supervision" 2016

2.2. Supervised by bounding box (B)

  • WSSL: "Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation" ICCV2015
  • Boxsup: "Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation" ICCV2015
  • Song et al.: "Box-driven class-wise region masking and filling rate guided loss for weakly supervised semantic segmentation" CVPR2019
  • BBAM: "BBAM: Bounding Box Attribution Map for Weakly Supervised Semantic and Instance Segmentation" CVPR2021
  • Oh et al.: "Ba ckground-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" CVPR2021
  • SPML: "Universal Weakly Supervised Segmentation by Pixel-to-Segment Contrastive Learning" ICLR2021

2.3. Supervised by scribble (S)

  • Scribblesup: "Scribblesup: Scribble-supervised convolutional networks for semantic segmentation" CVPR2016
  • NormalCut : "Normalized cut loss for weakly-supervised cnn segmentation" CVPR2018
  • KernelCut : "On regularized losses for weakly-supervised cnn segmentation" ECCV2018
  • BPG: "Boundary Perception Guidance: A Scribble-Supervised Semantic Segmentation Approach" IJCAI2019
  • SPML: "Universal Weakly Supervised Segmentation by Pixel-to-Segment Contrastive Learning" ICLR2021
  • DFR: "Dynamic Feature Regularized Loss for Weakly Supervised Semantic Segmentation" arxiv2021
  • A2GNN: "Affinity attention graph neural network for weakly supervised semantic segmentation" TPAMI2021
  • Method: "" 2021

2.4. Supervised by point (P)

  • WhatsPoint: "What’s the Point: Semantic Segmentation with Point Supervision" ECCV2016
  • PCAM: "PCAMs: Weakly Supervised Semantic Segmentation Using Point Supervision" arxiv2020

3. Dataset

PASCAL VOC 2012
MS COCO

About

Awesome weakly-supervised image semantic segmentation;scribble supervision,bounding box supervision, point supervision, image-level class supervision

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published