Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Cif 314 add ghg layer and metrics #98

Open
wants to merge 11 commits into
base: main
Choose a base branch
from
1 change: 1 addition & 0 deletions city_metrix/layers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,3 +26,4 @@
from .glad_lulc import LandCoverHabitatGlad
from .glad_lulc import LandCoverHabitatChangeGlad
from .cams import Cams
from .cams_ghg import CamsGhg
79 changes: 79 additions & 0 deletions city_metrix/layers/cams_ghg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
import xarray as xr
import ee

from .layer import Layer

class CamsGhg(Layer):
# Returned units: metric tonnes of GHG species or tonnes CO2e
GWP = {
'co2': 1, # by definition
'ch4': 28, # https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf
'chlorinated-hydrocarbons': 400, # Table A2 https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470865172.app2
'n2o': 265 # https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf
}
SUPPORTED_SPECIES = ['co2', 'ch4', 'n2o', 'chlorinated-hydrocarbons']
SUPPORTED_YEARS = [2010, 2015, 2020, 2023]

def __init__(self, species=None, sector='sum', co2e=True, year=2023, **kwargs):
super().__init__(**kwargs)
if species is not None and not species in self.SUPPORTED_SPECIES:
raise Exception(f'Unsupported species: {species}')
if not year in self.SUPPORTED_YEARS:
raise Exception(f'Unsupported year: {year}')
if species is None and co2e==False:
raise Exception('If sector is unspecified, all supported species will be summed and co2e must be True.')
if species is None and sector != 'sum':
raise Exception('If sector is unspecified, sector must be \"sum.\"')
if species is not None and sector != 'sum':
data_ic = ee.ImageCollection(f'projects/wri-datalab/cams-glob-ant/{species}').filter('year', year)
sectors = data_ic.aggregate_array('sector').getInfo()
if not sector in sectors:
raise Exception(f'Sector \"{sector}\" not available for {species} in {year}.')
self.species = species # None means all, summed
self.sector = sector
self.co2e = co2e # Want results in CO2e? If so, multiplies by 100-year GWP.
self.year = year # Currently supported: 2010, 2015, 2020, 2023

def get_data(self, bbox):
bbox = list(bbox)
if self.species is not None:
data_ic = ee.ImageCollection(f'projects/wri-datalab/cams-glob-ant/{self.species}')
data_im = data_ic.filter(ee.Filter.eq('year', self.year)).filter(ee.Filter.eq('sector', self.sector)).first()
scale = data_im.projection().getInfo()['transform'][0]
data_im = data_im.multiply(self.GWP[self.species])
if self.co2e:
data_im = data_im.multiply(self.GWP[self.species])
data_im = data_im.multiply(1000000) # Tg to tonne
ic = ee.ImageCollection(data_im)
scale = data_im.projection().getInfo()['transform'][0]
ds = xr.open_dataset(
ic,
engine = 'ee',
geometry = bbox,
crs = 'EPSG:4326',
scale = scale
)
else: # Sum over all species
allrasters_list = []
for species in self.SUPPORTED_SPECIES:
data_ic = ee.ImageCollection(f'projects/wri-datalab/cams-glob-ant/{species}')
data_im = data_ic.filter(ee.Filter.eq('year', self.year)).filter(ee.Filter.eq('sector', 'sum')).first()
data_im = data_im.multiply(self.GWP[species])
data_im = data_im.multiply(1000000) # Tg to tonne
allrasters_list.append(data_im)
allrasters_ic = ee.ImageCollection(allrasters_list)
sum_im = allrasters_ic.sum()
scale = data_im.projection().getInfo()['transform'][0]
ic = ee.ImageCollection(sum_im)
ds = xr.open_dataset(
ic,
engine = 'ee',
geometry = bbox,
crs = 'EPSG:4326',
scale = scale
)
ds = ds.transpose('time', 'lat', 'lon')
ds = ds.squeeze(['time'])
ds = ds.rio.set_spatial_dims('lon', 'lat')
return ds.to_array()

38 changes: 38 additions & 0 deletions city_metrix/metrics/ghg_emissions.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
import ee
import geopandas as gpd
import numpy as np
from city_metrix.layers import Layer, CamsGhg

SUPPORTED_SPECIES = CamsGhg.SUPPORTED_SPECIES
SUPPORTED_YEARS = CamsGhg.SUPPORTED_YEARS
GWP = CamsGhg.GWP

def ghg_emissions(zones, years=[2023]):
# supported years: 2010, 2015, 2020, 2023
if not isinstance(years, (list, set, tuple)):
raise Exception('Parameter years must be list, set, or tuple.')
for year in years:
if not year in SUPPORTED_YEARS:
raise Exception(f'Unsupported year {year}')

zones_copy = zones.copy(deep=True)

centroids = [zones.iloc[[i]].centroid for i in range(len(zones))]
geoms = [ee.Geometry.Point(c.x[i], c.y[i]) for i, c in enumerate(centroids)]
for species in SUPPORTED_SPECIES:
data_ic = ee.ImageCollection(f'projects/wri-datalab/cams-glob-ant/{species}')
for year in years:
year_results = data_ic.filter(ee.Filter.eq('year', year))
year_total = gpd.GeoDataFrame([0] * len(zones))
sectors = year_results.aggregate_array('sector').getInfo()
sectors.sort()
for sector in sectors:
results = year_results.filter(ee.Filter.eq('sector', sector)).first().reduceRegions(geoms, ee.Reducer.mean())
result_Tg = gpd.GeoDataFrame([i['properties']['mean'] for i in results.getInfo()['features']])
result_tonne = result_Tg * 1000000
zones_copy[f'{species}_{sector}_{year}_tonnes'] = result_tonne
zones_copy[f'{species}_{sector}_{year}_tonnes-CO2e'] = (result_tonne * GWP[species])
if sector == 'sum':
year_total += (result_tonne * GWP[species])
zones_copy[f'all-species_{year}_tonnes-CO2e'] = year_total
return zones_copy
5 changes: 5 additions & 0 deletions tests/test_layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
AverageNetBuildingHeight,
BuiltUpHeight,
Cams,
CamsGhg,
Era5HottestDay,
EsaWorldCover,
EsaWorldCoverClass,
Expand Down Expand Up @@ -59,6 +60,10 @@ def test_cams():
data = Cams().get_data(BBOX)
assert np.size(data) > 0

def test_camsghg():
data = CamsGhg().get_data(BBOX)
assert np.size(data) > 0

@pytest.mark.skipif(EXECUTE_IGNORED_TESTS == False, reason="CDS API needs personal access token file to run")
def test_era_5_hottest_day():
data = Era5HottestDay().get_data(BBOX)
Expand Down
Loading