Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adapt to new elastic index names #58

Merged
merged 4 commits into from
Feb 3, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 5 additions & 15 deletions app.R
Original file line number Diff line number Diff line change
Expand Up @@ -280,13 +280,8 @@ server <- function(input, output, session) {
job_records_cache()
})

interactive_jobs <- reactive({
if(input$adjust_interactive)
get_interactive_jobs(elastic_con, jobs = job_records())
})

job_breakdown <- reactive({
generate_job_statistics(df = job_records(), adjust_cpu = input$adjust_cpu, adjust_interactive = interactive_jobs())
generate_job_statistics(df = job_records(), adjust_cpu = input$adjust_cpu, adjust_interactive = input$adjust_interactive)
})

output$job_breakdown <- DT::renderDT({
Expand All @@ -303,14 +298,9 @@ server <- function(input, output, session) {
if (info$col != job_type_index) return() # do nothing if the clicked cell is not in the job_type column

selected_job_type <- df[info$row, 'job_type', drop = TRUE]
dt <- filter(job_records(), job_type == selected_job_type) %>% slice_sample(n = 10)

records <- get_docs_by_ids(
con = elastic_con,
ids = dt$`_id`,
timestamps = dt$timestamp,
fields = c('Job', 'Command', 'Job_Efficiency_Raw_Percent', 'RAW_MAX_MEM_EFFICIENCY_PERCENT', 'MEM_REQUESTED_MB', 'RUN_TIME_SEC')
) %>%
records <- job_records() %>%
filter(job_type == selected_job_type) %>%
slice_sample(n = 10) %>%
prepare_commands_table()

showModal(
Expand All @@ -330,7 +320,7 @@ server <- function(input, output, session) {
generate_job_statistics(
df = job_records(),
adjust_cpu = input$adjust_cpu,
adjust_interactive = interactive_jobs(),
adjust_interactive = input$adjust_interactive,
time_bucket = input$time_bucket
)
})
Expand Down
5 changes: 5 additions & 0 deletions src/constants.R
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,9 @@ Assume that successful processes requiring 1 cpu do not waste cpu.
time_buckets <- c("day", "week", "month")
elastic_bucket_aggregations <- c("terms", "multi_terms", "date_histogram")

success <- 'Success'
failed <- 'Failed'

raw_stats_elastic_columns <- c(
'Job',
'NUM_EXEC_PROCS', 'AVAIL_CPU_TIME_SEC', 'WASTED_CPU_SECONDS',
Expand All @@ -40,6 +43,8 @@ elastic_column_map <- c(
'mem_avail_mb_sec' = 'MEM_REQUESTED_MB_SEC',
'mem_wasted_mb_sec' = 'WASTED_MB_SECONDS',
'cpu_wasted_sec' = 'WASTED_CPU_SECONDS',
'raw_mem_wasted_mb_sec' = 'RAW_WASTED_MB_SECONDS',
'raw_cpu_wasted_sec' = 'RAW_WASTED_CPU_SECONDS',
'procs' = 'NUM_EXEC_PROCS',
'job_status' = 'Job',
'job_name' = 'JOB_NAME',
Expand Down
16 changes: 0 additions & 16 deletions src/elastic_helpers.R
Original file line number Diff line number Diff line change
Expand Up @@ -396,19 +396,3 @@ scroll_elastic <- function(con, body, fields) {

return(df)
}

get_docs_by_ids <- function (con, ids, timestamps, fields = NULL) {
index_prefix <- stringr::str_remove(attr(con, 'index'), "\\*$")
indexes <- paste0(index_prefix, 'farm-', format(timestamps, "%Y.%m.%d"))

res <- docs_mget(
conn = con,
index_type_id = purrr::map2(ids, indexes, ~ c(.y, '_doc', .x)),
source = fields
)

ids <- purrr::map_chr(res$docs, magrittr::extract2, i = '_id')
lapply(res$docs, magrittr::extract2, i = '_source') %>%
data.table::rbindlist() %>%
mutate(`_id` = ids)
}
51 changes: 21 additions & 30 deletions src/stat_helpers.R
Original file line number Diff line number Diff line change
Expand Up @@ -150,59 +150,50 @@ get_job_records <- function (con, query) {
df <- scroll_elastic(
con = con,
body = list(query = query),
fields = c('timestamp', 'JOB_NAME', 'Job',
'NUM_EXEC_PROCS', 'AVAIL_CPU_TIME_SEC', 'WASTED_CPU_SECONDS',
'MEM_REQUESTED_MB', 'MEM_REQUESTED_MB_SEC', 'WASTED_MB_SECONDS')
fields = c('timestamp', 'JOB_NAME', 'Job', 'RUN_TIME_SEC', 'Command',
'NUM_EXEC_PROCS', 'RAW_WASTED_CPU_SECONDS', 'MEM_REQUESTED_MB', 'RAW_WASTED_MB_SECONDS')
)

df %>%
annotate_jupyter_jobs(con, query) %>%
annotate_jupyter_jobs() %>%
prepare_job_records()
}

prepare_job_records <- function (df) {
df %>%
mutate(timestamp = lubridate::as_datetime(timestamp)) %>%
rename_raw_elastic_fields() %>%
mutate(job_type = parse_job_type(job_name), .keep = 'unused')
mutate(
mem_avail_mb_sec = as.numeric(RUN_TIME_SEC) * MEM_REQUESTED_MB,
cpu_avail_sec = as.numeric(RUN_TIME_SEC) * procs,
cpu_wasted_sec = ifelse(job_status == success, raw_cpu_wasted_sec, cpu_avail_sec),
mem_wasted_mb_sec = ifelse(job_status == success, raw_mem_wasted_mb_sec, mem_avail_mb_sec),
job_type = parse_job_type(job_name)
) %>%
select(-job_name)
}

annotate_jupyter_jobs <- function (df, con, query) {
ids <- get_jupyter_jobs(con, query)
annotate_jupyter_jobs <- function (df) {
ids <- get_jupyter_jobs(df)
df <- assign_jupyter_job_names(df, ids)
return(df)
}

get_jupyter_jobs <- function (con, query) {
jupyter_filter <- build_match_phrase_filter("Command", "jupyterhub-singleuser")
query$bool$filter <- append(query$bool$filter, jupyter_filter)
b <- list(query = query)

res <- elastic_search(con, index = attr(con, 'index'), body = b, asdf = T, size = 1e4, source = FALSE)

df <- extract_hits_from_elastic_response(res)
df[['_id']]
get_jupyter_jobs <- function (df) {
df %>%
filter(stringr::str_detect(Command, stringr::fixed('jupyter'))) %>%
filter(stringr::str_detect(Command, stringr::fixed('spawner'))) %>%
pull(`_id`)
}

assign_jupyter_job_names <- function (df, ids) {
df %>%
mutate(JOB_NAME = ifelse(`_id` %in% ids, "jupyter", JOB_NAME))
}

get_interactive_jobs <- function(con, jobs){
interactive_jobs <- filter(jobs, job_type == 'interactive')
if(nrow(interactive_jobs) == 0) return(NULL)
df <- get_docs_by_ids(
con = con,
ids = interactive_jobs$`_id`,
timestamps = interactive_jobs$timestamp,
fields = c('RAW_WASTED_CPU_SECONDS', 'RAW_WASTED_MB_SECONDS')
)
}

generate_job_statistics <- function (df, adjust_cpu = TRUE, adjust_interactive = NULL, time_bucket = 'none') {
if(!is.null(adjust_interactive)){
df <- adjust_interactive_statistics(df, interactive_jobs = adjust_interactive)
generate_job_statistics <- function (df, adjust_cpu = TRUE, adjust_interactive = FALSE, time_bucket = 'none') {
if(adjust_interactive){
df <- adjust_interactive_statistics(df)
}

if(adjust_cpu){
Expand Down
40 changes: 21 additions & 19 deletions src/table_helpers.R
Original file line number Diff line number Diff line change
Expand Up @@ -59,25 +59,23 @@ adjust_statistics <- function (df) {
df <- df %>%
mutate(
mem_wasted_cost = mem_wasted_mb_sec * ram_mb_second,
cpu_wasted_sec = ifelse(job_status == 'Success' & procs == 1, 0, cpu_wasted_sec)
cpu_wasted_sec = ifelse(job_status == success & procs == 1, 0, cpu_wasted_sec)
)

if('wasted_cost' %in% names(df))
df <- mutate(df, wasted_cost = ifelse(job_status == 'Success' & procs == 1, mem_wasted_cost, wasted_cost))
df <- mutate(df, wasted_cost = ifelse(job_status == success & procs == 1, mem_wasted_cost, wasted_cost))

return(df)
}

adjust_interactive_statistics <- function (df, interactive_jobs) {
adjust_interactive_statistics <- function (df) {
is_interactive <- df$job_type == 'interactive'
df %>%
left_join(interactive_jobs, by = '_id') %>%
mutate(
cpu_wasted_sec = ifelse(is_interactive, RAW_WASTED_CPU_SECONDS, cpu_wasted_sec),
mem_wasted_mb_sec = ifelse(is_interactive, RAW_WASTED_MB_SECONDS, mem_wasted_mb_sec),
job_status = ifelse(is_interactive, 'Success', job_status)
) %>%
select(-c('RAW_WASTED_CPU_SECONDS', 'RAW_WASTED_MB_SECONDS'))
cpu_wasted_sec = ifelse(is_interactive, raw_cpu_wasted_sec, cpu_wasted_sec),
mem_wasted_mb_sec = ifelse(is_interactive, raw_mem_wasted_mb_sec, mem_wasted_mb_sec),
job_status = ifelse(is_interactive, success, job_status)
)
}

generate_wasted_cost <- function (df) {
Expand Down Expand Up @@ -214,22 +212,26 @@ generate_efficiency_stats <- function(df, extra_stats = list()) {

prepare_commands_table <- function (df) {
df %>%
select(-`_id`) %>%
mutate(MEM_REQUESTED = convert_bytes(MEM_REQUESTED_MB, from = 'mb', to = 'b'), .keep = 'unused') %>%
rename(RUN_TIME = RUN_TIME_SEC) %>%
mutate(
MEM_REQUESTED = convert_bytes(MEM_REQUESTED_MB, from = 'mb', to = 'b'),
raw_cpu_efficiency = 100 * (1 - raw_cpu_wasted_sec / cpu_avail_sec),
raw_mem_efficiency = 100 * (1 - raw_mem_wasted_mb_sec / mem_avail_mb_sec),
.keep = 'unused') %>%
select(job_status, RUN_TIME = RUN_TIME_SEC, raw_cpu_efficiency, raw_mem_efficiency, MEM_REQUESTED, Command) %>%
gt::gt() %>%
gt::cols_align(align = "left", columns = 'Command') %>%
gt::fmt_percent(columns = c('Job_Efficiency_Raw_Percent', 'RAW_MAX_MEM_EFFICIENCY_PERCENT'), scale_values = FALSE) %>%
gt::fmt_percent(columns = c('raw_cpu_efficiency', 'raw_mem_efficiency'), scale_values = FALSE) %>%
gt::fmt_bytes(columns = MEM_REQUESTED, standard = 'binary') %>%
gt::fmt_duration(RUN_TIME, input_units = 'seconds', max_output_units = 1) %>%
gt::cols_move_to_end(Command) %>%
gt::cols_move_to_start(job_status) %>%
gt::cols_label(
Job_Efficiency_Raw_Percent = 'Raw CPU efficiency',
RAW_MAX_MEM_EFFICIENCY_PERCENT = 'Raw memory efficiency',
raw_cpu_efficiency = 'Raw CPU efficiency',
raw_mem_efficiency = 'Raw memory efficiency',
MEM_REQUESTED = 'Memory requested',
RUN_TIME = 'Run time'
) %>%
gt::cols_move_to_end(Command) %>%
gt::cols_move_to_start(Job)
RUN_TIME = 'Run time',
job_status = 'Job status',
)
}

prepare_raw_stats_records <- function (df) {
Expand Down
4 changes: 2 additions & 2 deletions terraform/main.tf
Original file line number Diff line number Diff line change
Expand Up @@ -133,8 +133,8 @@ resource "openstack_networking_secgroup_rule_v2" "shinyproxy_web_port" {

resource "openstack_compute_instance_v2" "server" {
name = "shinyproxy-server"
image_name = "jammy-WTSI-docker_247771_4ea57c30"
flavor_name = "m1.xlarge"
image_name = "jammy-WTSI-docker_324910_82eec972"
flavor_name = "m2.xlarge"
key_pair = openstack_compute_keypair_v2.kp.name
security_groups = [
"default",
Expand Down
11 changes: 11 additions & 0 deletions tests/testthat/test_elastic_helpers.R
Original file line number Diff line number Diff line change
Expand Up @@ -427,6 +427,17 @@ test_that("build_match_phrase_filter works", {
expect_equal(object, expected_object)
})

test_that("build_prefix_filter works", {
object <- build_prefix_filter("JOB_NAME", "nf-")
expected_object <- list(
list(
"prefix" = list("JOB_NAME" = "nf-")
)
)

expect_equal(object, expected_object)
})

test_that("get_numerical_colnames", {
# with mixed columns
test_df <- data.frame(
Expand Down
36 changes: 30 additions & 6 deletions tests/testthat/test_stat_helpers.R
Original file line number Diff line number Diff line change
Expand Up @@ -157,20 +157,20 @@ test_that("build_bom_aggregation works", {

test_that("prepare_job_records works", {
fake_data_frame <- data.frame(
AVAIL_CPU_TIME_SEC = c(800, 1000, 1200),
JOB_NAME = c('nf-hello', 'wrp_job', 'another_job'),
Job = c('Success', 'Success', 'Failed'),
MEM_REQUESTED_MB = c(1200, 2400, 3600),
MEM_REQUESTED_MB_SEC = c(12000, 42000, 60000),
NUM_EXEC_PROCS = c(1, 1, 3),
timestamp = c(1732146484, 1732146665, 1732146702),
WASTED_CPU_SECONDS = c(600, 500, 700),
WASTED_MB_SECONDS = c(5000, 20000, 10000)
raw_cpu_wasted_sec = c(600, 500, 700),
raw_mem_wasted_mb_sec = c(5000, 20000, 10000),
RUN_TIME_SEC = c(800, 1000, 400)
)

expected_columns <- c(
'cpu_avail_sec', 'job_status', 'MEM_REQUESTED_MB', 'mem_avail_mb_sec',
'procs', 'timestamp', 'cpu_wasted_sec', 'mem_wasted_mb_sec', 'job_type'
'job_status', 'MEM_REQUESTED_MB', 'procs', 'timestamp',
'raw_cpu_wasted_sec', 'raw_mem_wasted_mb_sec', 'RUN_TIME_SEC', 'mem_avail_mb_sec',
'cpu_avail_sec', 'cpu_wasted_sec', 'mem_wasted_mb_sec', 'job_type'
)

dt <- prepare_job_records(fake_data_frame)
Expand Down Expand Up @@ -346,6 +346,30 @@ test_that("assign_jupyter_job_names works", {
expect_equal(dt$JOB_NAME, expected_job_names)
})

test_that("get_jupyter_jobs works", {
df <- data.frame(
'_id' = c(1, 3, 2, 4),
'Command' = c('ls', 'jupyterhub-singleuser spawner', 'bash', 'call jupyterhub-singleuser\nspawner'),
check.names = FALSE
)
expected <- c(3, 4)
result <- get_jupyter_jobs(df)
expect_equal(result, expected)
})

test_that("annotate_jupyter_jobs works", {
df <- data.frame(
'_id' = c(1, 3, 2, 4),
'Command' = c('ls', 'jupyterhub-singleuser spawner', 'bash', 'call jupyterhub-singleuser\nspawner'),
'JOB_NAME' = c('job1', NA, 'job2', NA),
check.names = FALSE
)
expected <- c('job1', 'jupyter', 'job2', 'jupyter')
result <- annotate_jupyter_jobs(df)
expect_s3_class(result, 'data.frame')
expect_equal(result$JOB_NAME, expected)
})

test_that("decide_statistics_function works", {
expect_identical(decide_statistics_function('all', 'all'), get_bom_statistics)
expect_identical(decide_statistics_function('user1', 'all'), get_user_statistics)
Expand Down
19 changes: 8 additions & 11 deletions tests/testthat/test_table_helpers.R
Original file line number Diff line number Diff line change
Expand Up @@ -232,9 +232,11 @@ test_that("prepare_commands_table works", {
MEM_REQUESTED_MB = c(1000, 2000),
RUN_TIME_SEC = c(10, 100),
Command = c('rstudio', 'bash'),
Job_Efficiency_Raw_Percent = c(20, 30),
RAW_MAX_MEM_EFFICIENCY_PERCENT = c(10, 20),
Job = c('Success', 'Failed'),
cpu_avail_sec = c(500, 1000),
raw_cpu_wasted_sec = c(400, 700),
mem_avail_mb_sec = c(100, 1000),
raw_mem_wasted_mb_sec = c(90, 800),
job_status = c('Success', 'Failed'),
check.names = FALSE
)

Expand Down Expand Up @@ -267,13 +269,8 @@ test_that("adjust_interactive_statistics works", {
cpu_wasted_sec = c(100, 200, 300),
mem_wasted_mb_sec = c(1000, 2000, 3000),
job_status = c('Success', 'Failed', 'Failed'),
check.names = FALSE
)

jobs <- data.frame(
`_id` = c('id1', 'id3'),
RAW_WASTED_CPU_SECONDS = c(150, 350),
RAW_WASTED_MB_SECONDS = c(1500, 3500),
raw_cpu_wasted_sec = c(150, 200, 350),
raw_mem_wasted_mb_sec = c(1500, 2000, 3500),
check.names = FALSE
)

Expand All @@ -282,7 +279,7 @@ test_that("adjust_interactive_statistics works", {
expected_df$mem_wasted_mb_sec <- c(1500, 2000, 3500)
expected_df$job_status <- c('Success', 'Failed', 'Success')

dt <- adjust_interactive_statistics(df, jobs)
dt <- adjust_interactive_statistics(df)

expect_s3_class(dt, 'data.frame')
expect_equal(dt, expected_df)
Expand Down